Diego Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/620512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Neuroprotective Lipocalin Apolipoprotein D Stably Interacts with Specific Subtypes of Detergent-Resistant Membrane Domains in a Basigin-Independent Manner. Molecular Neurobiology, 2022, 59, 4015-4029.	4.0	3
2	An Evolutionary Perspective of the Lipocalin Protein Family. Frontiers in Physiology, 2021, 12, 718983.	2.8	9
3	The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Frontiers in Physiology, 2021, 12, 738991.	2.8	17
4	Apolipoprotein D-mediated preservation of lysosomal function promotes cell survival and delays motor impairment in Niemann-Pick type A disease. Neurobiology of Disease, 2020, 144, 105046.	4.4	7
5	Machine Learning Representation of Loss of Eye Regularity in a Drosophila Neurodegenerative Model. Frontiers in Neuroscience, 2020, 14, 516.	2.8	8
6	Control of the neuroprotective Lipocalin Apolipoprotein D expression by alternative promoter regions and differentially expressed mRNA 5' UTR variants. PLoS ONE, 2020, 15, e0234857.	2.5	4
7	Lipid-Binding Proteins in Brain Health and Disease. Frontiers in Neurology, 2019, 10, 1152.	2.4	19
8	Characterization of mammalian Lipocalin UTRs in silico: Predictions for their role in post-transcriptional regulation. PLoS ONE, 2019, 14, e0213206.	2.5	2
9	The MTT-formazan assay: Complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochemica, 2018, 120, 179-186.	1.8	35
10	<scp>M</scp> yelin extracellular leaflet compaction requires apolipoprotein <scp>D</scp> membrane management to optimize lysosomalâ€dependent recycling and glycocalyx removal. Clia, 2018, 66, 670-687.	4.9	27
11	Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Frontiers in Cellular Neuroscience, 2018, 12, 526.	3.7	120
12	Lower Expression of Genes Involved in Protection against Oxidative Stress in Symptomatic Carotid Atherosclerosis. Annals of Vascular Surgery, 2017, 41, 271-278.	0.9	0
13	Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genetics, 2017, 13, e1006603.	3.5	53
14	Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiology of Aging, 2015, 36, 1820-1833.	3.1	41
15	Aging without Apolipoprotein D: Molecular and cellular modifications in the hippocampus and cortex. Experimental Gerontology, 2015, 67, 19-47.	2.8	37
16	An automated image analysis method to measure regularity in biological patterns: a case study in a Drosophila neurodegenerative model. Molecular Neurodegeneration, 2015, 10, 9.	10.8	27
17	Lazarillo-related Lipocalins confer long-term protection against type I Spinocerebellar Ataxia degeneration contributing to optimize selective autophagy. Molecular Neurodegeneration, 2015, 10, 11.	10.8	21
18	Early Detection of High Oxidative Activity in Patients With Adenomatous Intestinal Polyps and Colorectal Adenocarcinoma: Myeloperoxidase and Oxidized Low-Density Lipoprotein in Serum as New Markers of Oxidative Stress in Colorectal Cancer, Laboratory Medicine, 2015, 46, 123-135.	1.2	25

DIEGO SANCHEZ

#	Article	IF	CITATIONS
19	Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation. Frontiers in Cellular Neuroscience, 2014, 8, 374.	3.7	23
20	Ligand bindingâ€dependent functions of the lipocalin NLaz: an in vivo study in Drosophila. FASEB Journal, 2014, 28, 1555-1567.	0.5	16
21	Expression and potential role of apolipoprotein D on the death–survival balance of human colorectal cancer cells under oxidative stress conditions. International Journal of Colorectal Disease, 2013, 28, 751-766.	2.2	23
22	Lipidâ€binding properties of human <scp>A</scp> po <scp>D</scp> and <scp>L</scp> azarilloâ€related lipocalins: functional implications for cell differentiation. FEBS Journal, 2013, 280, 3928-3943.	4.7	48
23	Grasshopper Lazarillo, a GPI-anchored Lipocalin, increases Drosophila longevity and stress resistance, and functionally replaces its secreted homolog NLaz. Insect Biochemistry and Molecular Biology, 2012, 42, 776-789.	2.7	19
24	The human carotid body transcriptome with focus on oxygen sensing and inflammation – a comparative analysis. Journal of Physiology, 2012, 590, 3807-3819.	2.9	54
25	Apolipoprotein D alters the early transcriptional response to oxidative stress in the adult cerebellum. Journal of Neurochemistry, 2011, 117, 949-960.	3.9	49
26	Genetic deficiency of apolipoprotein D in the mouse is associated with nonfasting hypertriglyceridemia and hyperinsulinemia. Metabolism: Clinical and Experimental, 2011, 60, 1767-1774.	3.4	18
27	Sex-dependent modulation of longevity by two Drosophila homologues of human Apolipoprotein D, GLaz and NLaz. Experimental Gerontology, 2011, 46, 579-589.	2.8	28
28	Apolipoprotein D mediates autocrine protection of astrocytes and controls their reactivity level, contributing to the functional maintenance of paraquat-challenged dopaminergic systems. Glia, 2011, 59, 1551-1566.	4.9	51
29	ApoD, a gliaâ€derived apolipoprotein, is required for peripheral nerve functional integrity and a timely response to injury. Glia, 2010, 58, 1320-1334.	4.9	71
30	Altered lipid metabolism in a Drosophila model of Friedreich's ataxia. Human Molecular Genetics, 2010, 19, 2828-2840.	2.9	94
31	Decreased kainate receptors in the hippocampus of apolipoprotein D knockout mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 271-278.	4.8	5
32	Control of Metabolic Homeostasis by Stress Signaling Is Mediated by the Lipocalin NLaz. PLoS Genetics, 2009, 5, e1000460.	3.5	110
33	Molecular interactions of the neuronal GPIâ€anchored lipocalin Lazarillo. Journal of Molecular Recognition, 2008, 21, 313-323.	2.1	15
34	Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell, 2008, 7, 506-515.	6.7	199
35	Loss of Glial Lazarillo, a Homolog of Apolipoprotein D, Reduces Lifespan and Stress Resistance in Drosophila. Current Biology, 2006, 16, 680-686.	3.9	119
36	Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. Journal of Physiology, 2005, 566, 491-503.	2.9	37

DIEGO SANCHEZ

#	Article	IF	CITATIONS
37	Molecular characterization and developmental expression pattern of the chicken apolipoprotein D gene: Implications for the evolution of vertebrate lipocalins. Developmental Dynamics, 2005, 232, 191-199.	1.8	34
38	Molecular evolution of epididymal lipocalin genes localized on mouse chromosome 2. Gene, 2004, 339, 49-59.	2.2	67
39	Phylogeny and regulation of four lipocalin genes clustered in the chicken genome: evidence of a functional diversification after gene duplication. Gene, 2004, 331, 95-106.	2.2	9
40	Exon-Intron Structure and Evolution of the Lipocalin Gene Family. Molecular Biology and Evolution, 2003, 20, 775-783.	8.9	90
41	A Reanalysis of the Ancient Mitochondrial DNA Sequences Recovered from Neandertal Bones. Molecular Biology and Evolution, 2002, 19, 1359-1366.	8.9	68
42	Expression pattern of the lipocalin Apolipoprotein D during mouse embryogenesis. Mechanisms of Development, 2002, 110, 225-229.	1.7	41
43	Expression of the AMBP gene transcript and its two protein products, α1-microglobulin and bikunin, in mouse embryogenesis. Mechanisms of Development, 2002, 117, 293-298.	1.7	20
44	Molecular identification of Kvα subunits that contribute to the oxygenâ€sensitive K ⁺ current of chemoreceptor cells of the rabbit carotid body. Journal of Physiology, 2002, 542, 369-382.	2.9	76
45	Lazarillo, a neuronal lipocalin in grasshoppers with a role in axon guidance. BBA - Proteins and Proteomics, 2000, 1482, 102-109.	2.1	17
46	A Phylogenetic Analysis of the Lipocalin Protein Family. Molecular Biology and Evolution, 2000, 17, 114-126.	8.9	136
47	Evolution of the lipocalin family as inferred from a protein sequence phylogeny. BBA - Proteins and Proteomics, 2000, 1482, 35-45.	2.1	43
48	Developmental expression and molecular characterization of two gap junction channel proteins expressed during embryogenesis in the grasshopperSchistocerca americana. , 1999, 24, 137-150.		31
49	Generation of evolutionary novelty by functional shift. BioEssays, 1999, 21, 432-439.	2.5	96
50	Developmental expression and molecular characterization of two gap junction channel proteins expressed during embryogenesis in the grasshopper Schistocerca americana. Genesis, 1999, 24, 137-150.	2.1	3
51	Molecular characterization and phylogenetic relationships of a protein with potential oxygen-binding capabilities in the grasshopper embryo. A hemocyanin in insects?. Molecular Biology and Evolution, 1998, 15, 415-426.	8.9	56
52	The Role of the Cell Surface in Neuronal Pathfinding. BioScience, 1996, 46, 344-354.	4.9	0
53	Developmental expression and biochemical analysis of conulin, a protein secreted from a subset of neuronal growth cones. Journal of Neuroscience, 1996, 16, 663-674.	3.6	5
54	Embryonic development of the enteric nervous system of the grasshopperSchistocerca americana. , 1996, 372, 581-596.		25

#	Article	IF	CITATIONS
55	Contributions of an orthopteran to the understanding of neuronal pathfinding. Immunology and Cell Biology, 1995, 73, 565-574.	2.3	12
56	Periaqueductal gray neurons' activity in a mesencephalic slice preparation. Brain Research, 1988, 455, 166-169.	2.2	8