Miriam Diamond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/620494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Science of the Total Environment, 2000, 254, 93-234.	8.0	600
2	ls House Dust the Missing Exposure Pathway for PBDEs? An Analysis of the Urban Fate and Human Exposure to PBDEs. Environmental Science & Technology, 2005, 39, 5121-5130.	10.0	583
3	Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environmental Science & Technology, 2022, 56, 1510-1521.	10.0	477
4	Using Passive Air Samplers To Assess Urbanâ^'Rural Trends for Persistent Organic Pollutants. 1. Polychlorinated Biphenyls and Organochlorine Pesticides. Environmental Science & Technology, 2004, 38, 4474-4483.	10.0	368
5	Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers?. Environmental Science and Technology Letters, 2019, 6, 638-649.	8.7	343
6	Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States. Environment International, 2008, 34, 232-238.	10.0	300
7	Indoor Contamination with Hexabromocyclododecanes, Polybrominated Diphenyl Ethers, and Perfluoroalkyl Compounds: An Important Exposure Pathway for People?. Environmental Science & Technology, 2010, 44, 3221-3231.	10.0	266
8	Using Passive Air Samplers To Assess Urbanâ^'Rural Trends for Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons. 2. Seasonal Trends for PAHs, PCBs, and Organochlorine Pesticides. Environmental Science & Technology, 2005, 39, 5763-5773.	10.0	228
9	Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environmental Research, 2006, 101, 42-52.	7.5	227
10	Stocks and Flows of PBDEs in Products from Use to Waste in the U.S. and Canada from 1970 to 2020. Environmental Science & Technology, 2015, 49, 1521-1528.	10.0	215
11	The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2015, 123, A107-11.	6.0	199
12	Spatial Distribution of Polybrominated Diphenyl Ethers in Southern Ontario As Measured in Indoor and Outdoor Window Organic Films. Environmental Science & amp; Technology, 2004, 38, 724-731.	10.0	176
13	Evidence for Organic Film on an Impervious Urban Surface:  Characterization and Potential Teratogenic Effects. Environmental Science & Technology, 2000, 34, 2900-2908.	10.0	149
14	Estimation of PCB Stocks, Emissions, and Urban Fate: Will our Policies Reduce Concentrations and Exposure?. Environmental Science & Technology, 2010, 44, 2777-2783.	10.0	148
15	Organophosphate Esters in Canadian Arctic Air: Occurrence, Levels and Trends. Environmental Science & Technology, 2016, 50, 7409-7415.	10.0	144
16	Organophosphate esters flame retardants in the indoor environment. Environment International, 2017, 106, 97-104.	10.0	142
17	Atmospherically Derived Organic Surface Films along an Urban-Rural Gradient. Environmental Science & Technology, 2001, 35, 4031-4037.	10.0	135
18	Hexabromocyclododecanes In Indoor Dust From Canada, the United Kingdom, and the United States. Environmental Science & Technology, 2008, 42, 459-464.	10.0	135

#	Article	IF	CITATIONS
19	Application of the QWASI (Quantitative Water Air Sediment Interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes. Chemosphere, 1989, 18, 1343-1365.	8.2	133
20	Accumulation of metals, trace elements and semi-volatile organic compounds on exterior window surfaces in Baltimore. Environmental Pollution, 2003, 122, 51-61.	7.5	132
21	Sources, Emissions, and Fate of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls Indoors in Toronto, Canada. Environmental Science & Technology, 2011, 45, 3268-3274.	10.0	129
22	Capturing microfibers – marketed technologies reduce microfiber emissions from washing machines. Marine Pollution Bulletin, 2019, 139, 40-45.	5.0	129
23	Novel flame retardants: Estimating the physical–chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements. Chemosphere, 2016, 144, 2401-2407.	8.2	128
24	Exploring the planetary boundary for chemical pollution. Environment International, 2015, 78, 8-15.	10.0	125
25	Characterization of Polar Organic Compounds in the Organic Film on Indoor and Outdoor Glass Windows. Environmental Science & Technology, 2003, 37, 2340-2349.	10.0	124
26	Brominated flame retardants in the indoor environment — Comparative study of indoor contamination from three countries. Environment International, 2016, 94, 150-160.	10.0	124
27	PCBs, PBDEs, and PAHs in Toronto air: Spatial and seasonal trends and implications for contaminant transport. Science of the Total Environment, 2012, 429, 272-280.	8.0	122
28	Fluorinated Compounds in North American Cosmetics. Environmental Science and Technology Letters, 2021, 8, 538-544.	8.7	120
29	Developing a multimedia model of chemical dynamics in an urban area. Chemosphere, 2001, 44, 1655-1667.	8.2	113
30	Evaluation of passive air sampler calibrations: Selection of sampling rates and implications for the measurement of persistent organic pollutants in air. Atmospheric Environment, 2011, 45, 1867-1875.	4.1	111
31	Multimedia Modeling of Polybrominated Diphenyl Ether Emissions and Fate Indoors. Environmental Science & Technology, 2009, 43, 2845-2850.	10.0	109
32	Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula) Tj ETQq0 0 0 rgBT /0	Overlock 10	0 Tf 50 222 T 108
33	Risks and Benefits of Consumption of Great Lakes Fish. Environmental Health Perspectives, 2012, 120, 11-18.	6.0	106
34	Passive sampler derived air concentrations of PBDEs along an urban–rural transect: Spatial and temporal trends. Chemosphere, 2006, 64, 262-267.	8.2	105
35	Polychlorinated biphenyls in domestic dust from Canada, New Zealand, United Kingdom and United States: Implications for human exposure. Chemosphere, 2009, 76, 232-238.	8.2	102
36	Chemical composition of surface films on glass windows and implications for atmospheric chemistry.	4.1	98

Atmospheric Environment, 2005, 39, 6578-6586.

#	Article	IF	CITATIONS
37	New Directions: Exposure to polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs): Current and future scenarios. Atmospheric Environment, 2006, 40, 1187-1188.	4.1	98
38	Distribution of Organophosphate Esters between the Gas and Particle Phase–Model Predictions vs Measured Data. Environmental Science & Technology, 2016, 50, 6644-6651.	10.0	93
39	Effects of phthalates on the development and expression of allergic disease andÂasthma. Annals of Allergy, Asthma and Immunology, 2014, 112, 496-502.	1.0	88
40	Concentrations and chiral signatures of POPs in soils and sediments: A comparative urban versus rural study in Canada and UK. Chemosphere, 2009, 74, 404-411.	8.2	87
41	Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environment International, 2016, 94, 315-324.	10.0	87
42	Product screening for sources of halogenated flame retardants in Canadian house and office dust. Science of the Total Environment, 2016, 545-546, 299-307.	8.0	86
43	Projected declines in global DHA availability for human consumption as a result of global warming. Ambio, 2020, 49, 865-880.	5.5	86
44	From the City to the Lake: Loadings of PCBs, PBDEs, PAHs and PCMs from Toronto to Lake Ontario. Environmental Science & Technology, 2014, 48, 3732-3741.	10.0	78
45	From Clothing to Laundry Water: Investigating the Fate of Phthalates, Brominated Flame Retardants, and Organophosphate Esters. Environmental Science & Technology, 2016, 50, 9289-9297.	10.0	77
46	Urban Contaminant Dynamics: From Source to Effect. Environmental Science & Technology, 2007, 41, 3796-3800.	10.0	74
47	Passive air sampling of flame retardants and plasticizers in Canadian homes using PDMS, XAD-coated PDMS and PUF samplers. Environmental Pollution, 2018, 239, 109-117.	7.5	72
48	Organophosphate Ester Transport, Fate, and Emissions in Toronto, Canada, Estimated Using an Updated Multimedia Urban Model. Environmental Science & Technology, 2018, 52, 12465-12474.	10.0	72
49	The Widespread Environmental Footprint of Indigo Denim Microfibers from Blue Jeans. Environmental Science and Technology Letters, 2020, 7, 840-847.	8.7	72
50	New Method for Calculating Comparative Toxicity Potential of Cationic Metals in Freshwater: Application to Copper, Nickel, and Zinc. Environmental Science & Technology, 2010, 44, 5195-5201.	10.0	71
51	Silicone wristbands integrate dermal and inhalation exposures to semi-volatile organic compounds (SVOCs). Environment International, 2019, 132, 105104.	10.0	68
52	Cooking Decreases Observed Perfluorinated Compound Concentrations in Fish. Journal of Agricultural and Food Chemistry, 2008, 56, 7551-7559.	5.2	67
53	Are cell phones an indicator of personal exposure to organophosphate flame retardants and plasticizers?. Environment International, 2019, 122, 104-116.	10.0	66
54	Assessing the organic composition of urban surface films using nuclear magnetic resonance spectroscopy. Chemosphere, 2006, 63, 142-152.	8.2	65

#	Article	IF	CITATIONS
55	Lifeâ€cycle framework for assessment of site remediation options: Case study. Environmental Toxicology and Chemistry, 1999, 18, 801-810.	4.3	62
56	Factors affecting the occurrence and enantiomeric degradation of hexachlorocyclohexane isomers in northern and temperate aquatic systems. Environmental Toxicology and Chemistry, 2001, 20, 2690-2698.	4.3	60
57	Phthalates: Relationships between Air, Dust, Electronic Devices, and Hands with Implications for Exposure. Environmental Science & Technology, 2020, 54, 8186-8197.	10.0	60
58	Application of the Multimedia Urban Model To Compare the Fate of SOCs in an Urban and Forested Watershed. Environmental Science & Technology, 2002, 36, 1004-1013.	10.0	59
59	Continuing sources of PCBs: The significance of building sealants. Environment International, 2010, 36, 506-513.	10.0	59
60	We need a global science-policy body on chemicals and waste. Science, 2021, 371, 774-776.	12.6	59
61	Use of Constructed Wetlands for Urban Stream Restoration: A Critical Analysis. Environmental Management, 1997, 21, 329-341.	2.7	56
62	Using experimental and forest soils to investigate the uptake of polycyclic aromatic hydrocarbons (PAHs) along an urban-rural gradient. Environmental Pollution, 2004, 129, 387-398.	7.5	56
63	Assessing the importance of heterogeneous reactions of polycyclic aromatic hydrocarbons in the urban atmosphere using the Multimedia Urban Model. Atmospheric Environment, 2007, 41, 37-50.	4.1	56
64	PCBs and organochlorine pesticides in indoor environments - A comparison of indoor contamination in Canada and Czech Republic. Chemosphere, 2018, 206, 622-631.	8.2	56
65	A Rate Constant Model of Chemical Dynamics in a Lake Ecosystem: PCBs in Lake Ontario. Journal of Great Lakes Research, 1994, 20, 625-642.	1.9	55
66	Chemical Footprint Method for Improved Communication of Freshwater Ecotoxicity Impacts in the Context of Ecological Limits. Environmental Science & amp; Technology, 2014, 48, 13253-13262.	10.0	55
67	Organophosphate Esters in the Canadian Arctic Ocean. Environmental Science & Technology, 2021, 55, 304-312.	10.0	55
68	From air to clothing: characterizing the accumulation of semi-volatile organic compounds to fabrics in indoor environments. Indoor Air, 2017, 27, 631-641.	4.3	54
69	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environmental Science & Technology, 2021, 55, 25-43.	10.0	54
70	Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. Environmental Health Perspectives, 2021, 129, 105001.	6.0	54
71	Examining the Gas-Particle Partitioning of Organophosphate Esters: How Reliable Are Air Measurements?. Environmental Science & Technology, 2018, 52, 13834-13844.	10.0	53
72	Exposure of Canadian electronic waste dismantlers to flame retardants. Environment International, 2019, 129, 95-104.	10.0	53

#	Article	IF	CITATIONS
73	Modeling urban films using a dynamic multimedia fugacity model. Chemosphere, 2012, 87, 1024-1031.	8.2	51
74	Anthropogenic particles (including microfibers and microplastics) in marine sediments of the Canadian Arctic. Science of the Total Environment, 2021, 784, 147155.	8.0	51
75	SO-MUM: A Coupled Atmospheric Transport and Multimedia Model Used to Predict Intraurban-Scale PCB and PBDE Emissions and Fate. Environmental Science & Technology, 2013, 47, 436-445.	10.0	50
76	Tri(2,4-di- <i>t</i> -butylphenyl) Phosphate: A Previously Unrecognized, Abundant, Ubiquitous Pollutant in the Built and Natural Environment. Environmental Science & Technology, 2018, 52, 12997-13003.	10.0	50
77	Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design. Chemosphere, 2019, 227, 435-443.	8.2	50
78	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	4.7	48
79	Implications of considering metal bioavailability in estimates of freshwater ecotoxicity: examination of two case studies. International Journal of Life Cycle Assessment, 2011, 16, 774.	4.7	48
80	Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions. Science of the Total Environment, 2016, 563-564, 99-107.	8.0	48
81	Semivolatile Organic Compounds in Window Films from Lower Manhattan after the September 11th World Trade Center Attacks. Environmental Science & Technology, 2004, 38, 3514-3524.	10.0	47
82	Calibration of polydimethylsiloxane and XAD-Pocket passive air samplers (PAS) for measuring gas- and particle-phase SVOCs. Atmospheric Environment, 2016, 143, 202-208.	4.1	47
83	Calibration of two passive air samplers for monitoring phthalates and brominated flame-retardants in indoor air. Chemosphere, 2015, 137, 166-173.	8.2	46
84	Halogenated flame retardants and organophosphate esters in the air of electronic waste recycling facilities: Evidence of high concentrations and multiple exposures. Environment International, 2019, 128, 244-253.	10.0	46
85	Application of the QWASI Fugacity/Aquivalence Model to Assessing Sources and Fate of Contaminants in Hamilton Harbour. Journal of Great Lakes Research, 1993, 19, 582-602.	1.9	45
86	Gas-Phase Ambient Air Contaminants Exhibit Significant Dioxin-like and Estrogen-like Activity in Vitro. Environmental Health Perspectives, 2006, 114, 697-703.	6.0	45
87	Estimation of Atmospheric Emissions of Six Semivolatile Polycyclic Aromatic Hydrocarbons in Southern Canada and the United States by Use of an Emissions Processing System. Environmental Science & Technology, 2007, 41, 4205-4213.	10.0	44
88	A model of the exchange of inorganic chemicals between water and sediments. Environmental Science & Technology, 1990, 24, 713-722.	10.0	43
89	Flame retardants and plasticizers in a Canadian waste electrical and electronic equipment (WEEE) dismantling facility. Science of the Total Environment, 2019, 675, 594-603.	8.0	42
90	Perfluoroalkyl Contaminants in Window Film: Indoor/Outdoor, Urban/Rural, and Winter/Summer Contamination and Assessment of Carpet as a Possible Source. Environmental Science & Technology, 2009, 43, 7317-7323.	10.0	40

#	Article	IF	CITATIONS
91	Application of Land Use Regression to Identify Sources and Assess Spatial Variation in Urban SVOC Concentrations. Environmental Science & amp; Technology, 2013, 47, 1887-1895.	10.0	39
92	Development of a fugacity/aquivalence model of mercury dynamics in lakes. Water, Air, and Soil Pollution, 1999, 111, 337-357.	2.4	38
93	Evolution rates and PCB content of surface films that develop on impervious urban surfaces. Atmospheric Environment, 2008, 42, 6131-6143.	4.1	38
94	Beyond Safe Operating Space: Finding Chemical Footprinting Feasible. Environmental Science & Technology, 2014, 48, 6057-6059.	10.0	38
95	A comparison of contaminant dynamics in arctic and temperate fish: A modeling approach. Chemosphere, 2006, 63, 1328-1341.	8.2	36
96	The Magnitude and Spatial Range of Current-Use Urban PCB and PBDE Emissions Estimated Using a Coupled Multimedia and Air Transport Model. Environmental Science & Technology, 2014, 48, 1075-1083.	10.0	36
97	Urban sources of synthetic musk compounds to the environment. Environmental Sciences: Processes and Impacts, 2019, 21, 74-88.	3.5	36
98	Development of a Multichemical Food Web Model:  Application to PBDEs in Lake Ellasjøen, Bear Island, Norway. Environmental Science & Technology, 2006, 40, 4714-4721.	10.0	35
99	Determination of Vapor Pressures for Organophosphate Esters. Journal of Chemical & Engineering Data, 2014, 59, 1441-1447.	1.9	35
100	Polydimethylsiloxane (silicone rubber) brooch as a personal passive air sampler for semi-volatile organic compounds. Chemosphere, 2018, 208, 1002-1007.	8.2	34
101	Measuring exposure of e-waste dismantlers in Dhaka Bangladesh to organophosphate esters and halogenated flame retardants using silicone wristbands and T-shirts. Science of the Total Environment, 2020, 720, 137480.	8.0	34
102	Development of a Mass Balance Model of the Fate of 17 Chemicals in the Bay of Quinte. Journal of Great Lakes Research, 1994, 20, 643-666.	1.9	33
103	The Kingston Allergy Birth Cohort. Annals of Allergy, Asthma and Immunology, 2017, 118, 465-473.	1.0	33
104	Application of a Mass Balance Model To Assess In-Place Arsenic Pollution. Environmental Science & Technology, 1995, 29, 29-42.	10.0	32
105	Wet deposition loadings of organic contaminants to Lake Ontario: Assessing the influence of precipitation from urban and rural sites. Atmospheric Environment, 2011, 45, 5042-5049.	4.1	32
106	Title is missing!. Water, Air, and Soil Pollution, 2000, 117, 133-156.	2.4	31
107	Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Chemosphere, 2011, 82, 268-277.	8.2	31
108	Persistent Problem: Global Challenges to Managing PCBs. Environmental Science & Technology, 2022, 56, 9029-9040.	10.0	31

#	Article	IF	CITATIONS
109	A Mass Balance Model Describing Multiyear Fate of Organochlorine Compounds in a High Arctic Lake. Environmental Science & Technology, 2002, 36, 996-1003.	10.0	30
110	Alternative Flame Retardant, 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine, in an E-waste Recycling Facility and House Dust in North America. Environmental Science & Technology, 2018, 52, 3599-3607.	10.0	30
111	Linking past uses of legacy SVOCs with today's indoor levels and human exposure. Environment International, 2019, 127, 653-663.	10.0	30
112	Regulation of chemicals in children's products: How U.S. and EU regulation impacts small markets. Science of the Total Environment, 2018, 616-617, 462-471.	8.0	29
113	Degradation as a Loss Mechanism in the Fate of α-Hexachlorocyclohexane in Arctic Watersheds. Environmental Science & Technology, 2000, 34, 812-818.	10.0	28
114	Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling. Chemosphere, 2016, 156, 204-211.	8.2	28
115	Chiral Pesticides in Soil and Water and Exchange with the Atmosphere. Scientific World Journal, The, 2002, 2, 357-373.	2.1	27
116	DEVELOPMENT OF A COUPLED METAL SPECIATION–FATE MODEL FOR SURFACE AQUATIC SYSTEMS. Environmental Toxicology and Chemistry, 2004, 23, 1376.	4.3	27
117	Vertical and Temporal Distribution of Persistent Organic Pollutants in Toronto. 1. Organochlorine Pesticides. Environmental Science & amp; Technology, 2007, 41, 2172-2177.	10.0	26
118	Partitioning characteristics of PCBs in urban surface films. Atmospheric Environment, 2008, 42, 5696-5705.	4.1	26
119	Identifying the Research and Infrastructure Needs for the Global Assessment of Hazardous Chemicals Ten Years after Establishing the Stockholm Convention. Environmental Science & Technology, 2011, 45, 7617-7619.	10.0	25
120	A Need for Standardized Reporting: A Scoping Review of Bioretention Research 2000–2019. Water (Switzerland), 2020, 12, 3122.	2.7	25
121	Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. Environmental Science & Technology, 2022, 56, 2936-2949.	10.0	25
122	Sticky Windows: Chemical and Biological Characteristics of the Organic Film Derived from Particulate and Gas-Phase Air Contaminants Found on an Urban Impervious Surface. Archives of Environmental Contamination and Toxicology, 2003, 44, 421-429.	4.1	24
123	Application of the Multimedia Urban Model to estimate the emissions and environmental fate of PAHs in Tarragona County, Catalonia, Spain. Science of the Total Environment, 2016, 573, 1622-1629.	8.0	24
124	Polychlorinated Dioxins and Furans from the World Trade Center Attacks in Exterior Window Films from Lower Manhattan in New York City. Environmental Science & Technology, 2005, 39, 1995-2003.	10.0	23
125	Contaminant fate and transport in the Venice Lagoon: Results from a multi-segment multimedia model. Ecotoxicology and Environmental Safety, 2010, 73, 222-230.	6.0	23
126	Early life exposure to phthalates in the Canadian Healthy Infant Longitudinal Development (CHILD) study: a multi-city birth cohort. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 70-85.	3.9	23

#	Article	IF	CITATIONS
127	Early life exposure to phthalates and the development of childhood asthma among Canadian children. Environmental Research, 2021, 197, 110981.	7.5	21
128	Occupational Exposure of Canadian Nail Salon Workers to Plasticizers Including Phthalates and Organophosphate Esters. Environmental Science & Technology, 2022, 56, 3193-3203.	10.0	21
129	Contaminant fate in high arctic lakes: development and application of a mass balance model. Science of the Total Environment, 1997, 201, 171-187.	8.0	20
130	Elevated Concentrations of Semivolatile Organic Compounds in Social Housing Multiunit Residential Building Apartments. Environmental Science and Technology Letters, 2020, 7, 191-197.	8.7	20
131	Cas Chromatographic Estimation of Vapor Pressures and Octanol–Air Partition Coefficients of Semivolatile Organic Compounds of Emerging Concern. Journal of Chemical & Engineering Data, 2020, 65, 2467-2475.	1.9	20
132	Development of a mercury speciation, fate, and biotic uptake (BIOTRANSPEC) model: Application to Lahontan Reservoir (Nevada, USA). Environmental Toxicology and Chemistry, 2007, 26, 2260-2273.	4.3	19
133	Impacts of Cooking Technique on Polychlorinated Biphenyl and Polychlorinated Dioxins/Furan Concentrations in Fish and Fish Products with Intake Estimates. Journal of Agricultural and Food Chemistry, 2013, 61, 989-997.	5.2	19
134	Isomers of tris(chloropropyl) phosphate (TCPP) in technical mixtures and environmental samples. Analytical and Bioanalytical Chemistry, 2017, 409, 6989-6997.	3.7	19
135	Characterization of Polycyclic Aromatic Compounds in Commercial Pavement Sealcoat Products for Enhanced Source Apportionment. Environmental Science & amp; Technology, 2019, 53, 3157-3165.	10.0	19
136	Effects of estimates from different geochemical models on metal fate predicted by coupled speciationâ€fate models. Environmental Toxicology and Chemistry, 2008, 27, 1020-1030.	4.3	18
137	Interlaboratory study of novel halogenated flame retardants: INTERFLAB. Analytical and Bioanalytical Chemistry, 2015, 407, 6759-6769.	3.7	18
138	Methods of Responsibly Managing End-of-Life Foams and Plastics Containing Flame Retardants: Part I. Environmental Engineering Science, 2018, 35, 573-587.	1.6	18
139	Can Silicone Passive Samplers be Used for Measuring Exposure of e-Waste Workers to Flame Retardants?. Environmental Science & Technology, 2020, 54, 15277-15286.	10.0	18
140	Fate of organochlorine contaminants in arctic and subarctic lakes estimated by mass balance modelling. Science of the Total Environment, 2005, 342, 245-259.	8.0	17
141	Bidirectional transfer of halogenated flame retardants between the gastrointestinal tract and ingested plastics in urban-adapted ring-billed gulls. Science of the Total Environment, 2020, 730, 138887.	8.0	17
142	Aquivalence revisited — New model formulation and application to assess environmental fate of ionic pharmaceuticals in Hamilton Harbour, Lake Ontario. Environment International, 2011, 37, 821-828.	10.0	16
143	Are We Exposed to Halogenated Flame Retardants from both Primary and Secondary Sources?. Environmental Science and Technology Letters, 2020, 7, 585-593.	8.7	16
144	Atmospheric mercury accumulation and washoff processes on impervious urban surfaces. Atmospheric Environment, 2008, 42, 7429-7438.	4.1	14

#	Article	IF	CITATIONS
145	Approaches for estimating PUF-air partitions coefficient for semi-volatile organic compounds: A critical comparison. Chemosphere, 2017, 168, 199-204.	8.2	14
146	Novel Bayesian Method to Derive Final Adjusted Values of Physicochemical Properties: Application to 74 Compounds. Environmental Science & amp; Technology, 2021, 55, 12302-12316.	10.0	14
147	<i>Risks and Benefits of Fish Consumption</i> For Childbearing Women. Canadian Journal of Dietetic Practice and Research, 2010, 71, 41-45.	0.6	13
148	Evaluation of the OECD <i>P</i> _{OV} and LRTP screening tool for estimating the long-range transport of organophosphate esters. Environmental Sciences: Processes and Impacts, 2020, 22, 207-216.	3.5	13
149	Spatial and temporal variations of halogenated flame retardants and organophosphate esters in landfill air: Potential linkages with gull exposure. Environmental Pollution, 2021, 271, 116396.	7.5	13
150	Early Life Exposure to Tris(2-butoxyethyl) Phosphate (TBOEP) Is Related to the Development of Childhood Asthma. Environmental Science and Technology Letters, 2021, 8, 531-537.	8.7	13
151	Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil. Chemosphere, 2008, 70, 914-924.	8.2	12
152	Fatty acids in Great Lakes lake trout and whitefish. Journal of Great Lakes Research, 2013, 39, 120-127.	1.9	12
153	A general model of polyunsaturated fatty acid (PUFA) uptake, loss and transformation in freshwater fish. Ecological Modelling, 2016, 323, 96-105.	2.5	12
154	A miniature bird-borne passive air sampler for monitoring halogenated flame retardants. Science of the Total Environment, 2017, 599-600, 1903-1911.	8.0	12
155	Transient Multimedia Model for Investigating the Influence of Indoor Human Activities on Exposure to SVOCs. Environmental Science & Technology, 2020, 54, 10772-10782.	10.0	12
156	Hands as Agents of Chemical Transport in the Indoor Environment. Environmental Science and Technology Letters, 2021, 8, 326-332.	8.7	12
157	Time to Break the "Lock-In―Impediments to Chemicals Management. Environmental Science & Technology, 2022, 56, 3863-3870.	10.0	12
158	Dynamics of PCBs in the Food Web of Lake Winnipeg. Journal of Great Lakes Research, 2006, 32, 712.	1.9	11
159	Methods of Responsibly Managing End-of-Life Foams and Plastics Containing Flame Retardants: Part II. Environmental Engineering Science, 2018, 35, 588-602.	1.6	11
160	Challenges in the Analysis of Novel Flame Retardants in Indoor Dust: Results of the INTERFLAB 2 Interlaboratory Evaluation. Environmental Science & Technology, 2018, 52, 9295-9303.	10.0	11
161	Trace Organic Contaminant Transfer and Transformation in Bioretention Cells: A Field Tracer Test with Benzotriazole. Environmental Science & amp; Technology, 2021, 55, 12281-12290.	10.0	11
162	Modeling Clothing as a Vector for Transporting Airborne Particles and Pathogens across Indoor Microenvironments. Environmental Science & Technology, 2022, 56, 5641-5652.	10.0	11

#	Article	IF	CITATIONS
163	Use of a food web model to evaluate the factors responsible for high PCB fish concentrations in Lake EllasjÃ,en, a high Arctic Lake. Environmental Science and Pollution Research, 2009, 16, 176-190.	5.3	10
164	Examination of the uncertainty in contaminant fate and transport modeling: A case study in the Venice Lagoon. Ecotoxicology and Environmental Safety, 2010, 73, 231-239.	6.0	10
165	Why Was My Paper Rejected without Review?. Environmental Science & Technology, 2020, 54, 11641-11644.	10.0	10
166	Broaden chemicals scope in biodiversity targets. Science, 2022, 376, 1280-1280.	12.6	10
167	DYNAMIC COUPLED METAL TRANSPORT–SPECIATION MODEL: APPLICATION TO ASSESS A ZINC-CONTAMINATED LAKE. Environmental Toxicology and Chemistry, 2004, 23, 2410.	4.3	8
168	An Interagency Comparison of Screening-Level Risk Assessment Approaches. Risk Analysis, 2005, 25, 841-853.	2.7	8
169	High Production, Low Information: We Need To Know More About Polymeric Flame Retardants. Environmental Science & Technology, 2021, 55, 3467-3469.	10.0	8
170	Indoor exposure to phthalates and polycyclic aromatic hydrocarbons (PAHs) to Canadian children: the Kingston allergy birth cohort. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 69-81.	3.9	8
171	The role of phytoplankton in the removal of arsenic by sedimentation from surface waters. Hydrobiologia, 1996, 324, 117-123.	2.0	7
172	A modeling assessment of contaminant fate in the Bay of Quinte, Lake Ontario: Part 1. Metals. Aquatic Ecosystem Health and Management, 2011, 14, 85-93.	0.6	7
173	Chemical Footprints: Thin Boundaries Support Environmental Quality Management. Environmental Science & Technology, 2014, 48, 13025-13026.	10.0	7
174	Lead in children's jewelry: the impact of regulation. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 10-16.	3.9	7
175	Stormwater Bioretention Cells Are Not an Effective Treatment for Persistent and Mobile Organic Compounds (PMOCs). Environmental Science & Technology, 2022, , .	10.0	7
176	Loadings, Dynamics and Response Time of Seven Metals in Hamilton Harbour: Results of a Mass Balance Study. Water Quality Research Journal of Canada, 1996, 31, 623-642.	2.7	6
177	A fitâ€forâ€purpose categorization scheme for microplastic morphologies. Integrated Environmental Assessment and Management, 2023, 19, 422-435.	2.9	6
178	Air-Soil and Air-Water Exchange of Chiral Pesticides. ACS Symposium Series, 2003, , 196-225.	0.5	5
179	Fixation of XAD-4 power on filter paper using methyl cellulose for the passive air sampling of semi-volatile organic compounds in indoor air. International Journal of Environmental Analytical Chemistry, 2016, 96, 1145-1155.	3.3	5
180	Freshwater ecotoxicity characterization factors for aluminum. International Journal of Life Cycle Assessment, 2018, 23, 2137-2149.	4.7	5

#	Article	IF	CITATIONS
181	Potential Importance of Inhalation Exposures for Wildlife Using Screening-Level Ecological Risk Assessment. Human and Ecological Risk Assessment (HERA), 2007, 13, 870-883.	3.4	4
182	Toxic chemicals as enablers and poisoners of the technosphere. Infrastructure Asset Management, 2017, 4, 72-80.	1.6	4
183	Critical load analysis in hazard assessment of metals using a Unit World Model. Environmental Toxicology and Chemistry, 2011, 30, 2157-2166.	4.3	3
184	A modeling assessment of contaminant fate in the Bay of Quinte, Lake Ontario: Part 2. Organic chemicals. Aquatic Ecosystem Health and Management, 2014, 17, 137-150.	0.6	3
185	Surprising Degradation Products from an Under-Fire Insecticide. ACS Central Science, 2017, 3, 97-98.	11.3	3
186	Textile Washing Conveys SVOCs from Indoors to Outdoors: Application and Evaluation of a Residential Multimedia Model. Environmental Science & Technology, 2021, 55, 12517-12527.	10.0	3
187	Hazardous chemicals in outdoor and indoor surfaces: artificial turf and laminate flooring. Journal of Exposure Science and Environmental Epidemiology, 2021, , .	3.9	3
188	Response to Comment on "Outside the Safe Operating Space of the Planetary Boundary for Novel Entities― Environmental Science & Technology, 2022, 56, 6788-6789.	10.0	3
189	Halogenated flame retardants in Canadian house dust. Integrated Environmental Assessment and Management, 2014, 10, 599-600.	2.9	1
190	Urinary Metabolites of Organophosphate Esters (OPEs) in Electronic Waste Recycling Workers from the Province of Quebec, Canada. ISEE Conference Abstracts, 2018, 2018, .	0.0	1
191	Life-cycle framework for assessment of site remediation options: Case study. , 1999, 18, 801.		1
192	Integrated Approach for Hazard Assessment of Metals and Inorganic Metal Substances. , 2007, , 11-54.		1
193	Quantitative filter forensics for semivolatile organic compounds in social housing apartments. Indoor Air, 2022, 32, e12994.	4.3	1
194	Hearing All Voices to Address Environmental Challenges at a Global Scale. Environmental Science & Technology, 0, , .	10.0	1
195	Sustainability of the Internet of Things Requires Understanding of Mineral Demands and Supplies. Environmental Science & Technology, 2022, 56, 9835-9837.	10.0	1
196	Africa: renewables infrastructure avoids stranded assets. Nature, 2021, 595, 353-353.	27.8	0
197	Chemical Dynamics in Urban Areas. , 2010, , 531-563.		0
198	A Long Way From Home—Industrial Chemicals in the Arctic That Really Should Not Be There. Frontiers for Young Minds, 0, 8, .	0.8	0

#	Article	IF	CITATIONS
199	Introducing "Embedded Toxicity― A Necessary Metric for the Sound Management of Building Materials. Environmental Science & Technology, 2022, 56, 9838-9841.	10.0	0