Nir Yakoby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6204533/publications.pdf Version: 2024-02-01

		471509	434195
33	1,838	17	31
papers	citations	h-index	g-index
33	33	33	1998
all docs	docs citations	times ranked	citing authors

NID YAKORY

#	Article	IF	CITATIONS
1	A Unifying Framework for Understanding Biological Structures and Functions Across Levels of Biological Organization. Integrative and Comparative Biology, 2021, , .	2.0	1
2	The ETS-transcription factor Pointed is sufficient to regulate the posterior fate of the follicular epithelium. Development (Cambridge), 2020, 147, .	2.5	5
3	Quantitative analyses of EGFR localization and trafficking dynamics in the follicular epithelium. Development (Cambridge), 2020, 147, .	2.5	9
4	In locus analysis of patterning evolution in the BMPR2 Wishful thinking. Development (Cambridge), 2018, 145, .	2.5	3
5	Gene regulation during <i>Drosophila</i> eggshell patterning. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5808-5813.	7.1	16
6	Simple Expression Domains Are Regulated by Discrete CRMs During Drosophila Oogenesis. G3: Genes, Genomes, Genetics, 2017, 7, 2705-2718.	1.8	7
7	Control of reaction-diffusion equations on time-evolving manifolds. , 2016, 2016, 1614-1619.		3
8	Evolutionary changes in TGFα distribution underlie morphological diversity in eggshells from <i>Drosophila</i> species. Development (Cambridge), 2014, 141, 4710-4715.	2.5	9
9	Chorion Patterning: A Window into Gene Regulation and Drosophila Species' Relatedness. Molecular Biology and Evolution, 2014, 31, 154-164.	8.9	14
10	The Drosophila BMPRII, wishful thinking, is required for eggshell patterning. Developmental Biology, 2013, 375, 45-53.	2.0	21
11	Evolution of BMP Signaling in Drosophila Oogenesis: A Receptor-Based Mechanism. Biophysical Journal, 2012, 102, 1722-1730.	0.5	15
12	Using Drosophila as a model system to study cold tolerance. FASEB Journal, 2012, 26, 969.5.	0.5	0
13	BMP signaling dynamics in the follicle cells of multiple Drosophila species. Developmental Biology, 2011, 354, 151-159.	2.0	21
14	Pattern formation by a moving morphogen source. Physical Biology, 2011, 8, 045003.	1.8	26
15	Pattern formation by dynamically interacting network motifs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3213-3218.	7.1	35
16	Expression patterns of cadherin genes in Drosophila oogenesis. Gene Expression Patterns, 2009, 9, 31-36.	0.8	22
17	Cad74A is regulated by BR and is required for robust dorsal appendage formation in Drosophila oogenesis. Developmental Biology, 2008, 322, 289-301.	2.0	16
18	A Combinatorial Code for Pattern Formation in Drosophila Oogenesis. Developmental Cell, 2008, 15, 725-737.	7.0	65

Nir Yakoby

#	Article	IF	CITATIONS
19	<i>Drosophila</i> eggshell is patterned by sequential action of feedforward and feedback loops. Development (Cambridge), 2008, 135, 343-351.	2.5	75
20	Spatial Regulation of BMP Signaling by Patterned Receptor Expression. Tissue Engineering - Part A, 2008, 14, 1469-1477.	3.1	20
21	Tobacco ribosomal DNA spacer element elevates Bowman–Birk inhibitor expression in tomato plants. Plant Cell Reports, 2006, 25, 573-581.	5.6	8
22	Quantitative analysis of the GAL4/UAS system inDrosophila oogenesis. Genesis, 2006, 44, 66-74.	1.6	46
23	Cosecretion of Protease Inhibitor Stabilizes Antibodies Produced by Plant Roots. Plant Physiology, 2006, 141, 1185-1193.	4.8	115
24	Systems-level questions in Drosophila oogenesis. IET Systems Biology, 2005, 152, 276.	2.0	12
25	A simple method to determine trypsin and chymotrypsin inhibitory activity. Journal of Proteomics, 2004, 59, 241-251.	2.4	11
26	Pathogenic fungi: leading or led by ambient pH?. Molecular Plant Pathology, 2003, 4, 509-516.	4.2	159
27	The Analysis of Fruit Protection Mechanisms Provided by Reduced-Pathogenicity Mutants of Colletotrichum gloeosporioides Obtained by Restriction Enzyme Mediated Integration. Phytopathology, 2002, 92, 1196-1201.	2.2	9
28	Plants and human health in the twenty-first century. Trends in Biotechnology, 2002, 20, 522-531.	9.3	689
29	Colletotrichum gloeosporioides pelB Is an Important Virulence Factor in Avocado Fruit-Fungus Interaction. Molecular Plant-Microbe Interactions, 2001, 14, 988-995.	2.6	162
30	Development of Colletotrichum gloeosporioides Restriction Enzyme-Mediated Integration Mutants as Biocontrol Agents Against Anthracnose Disease in Avocado Fruits. Phytopathology, 2001, 91, 143-148.	2.2	37
31	Postharvest chlorine treatments for the control of the persimmon black spot disease caused by Alternaria alternata. Postharvest Biology and Technology, 2001, 22, 271-277.	6.0	37
32	Expression of Pectate Lyase from Colletotrichum gloeosporioides in C. magna Promotes Pathogenicity. Molecular Plant-Microbe Interactions, 2000, 13, 887-891.	2.6	44
33	pH Regulation of Pectate Lyase Secretion Modulates the Attack of Colletotrichum gloeosporioides on Avocado Fruits. Applied and Environmental Microbiology, 2000, 66, 1026-1030.	3.1	126