
Nozomu Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6203986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of thermal conductivity by adding tungsten and/or copper wire in F82H. Journal of Nuclear Science and Technology, 2022, 59, 216-221.	1.3	3
2	Development and validation of evaporation model for a multi-component fuel considering volume-average internal mass and enthalpy. International Journal of Heat and Mass Transfer, 2022, 188, 122318.	4.8	1
3	Turbulent flame propagation mechanism of polymethylmethacrylate particle cloud–ammonia co-combustion. Combustion and Flame, 2022, 241, 112077.	5.2	9
4	Exploring a critical diameter for thermo-acoustic instability of downward propagating flames in tubes. Proceedings of the Combustion Institute, 2021, 38, 1945-1954.	3.9	7
5	Effect of ambient pressure on the extinction limit for opposed flame spread over an electrical wire in microgravity. Proceedings of the Combustion Institute, 2021, 38, 4767-4774.	3.9	7
6	Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion. Proceedings of the Combustion Institute, 2021, 38, 4043-4052.	3.9	46
7	Turbulent flame propagation limits of ammonia/methane/air premixed mixture in a constant volume vessel. Proceedings of the Combustion Institute, 2021, 38, 5171-5180.	3.9	26
8	Near-limit oscillatory behaviors on wick flames of dimethyl carbonate with trimethyl phosphate additions. Proceedings of the Combustion Institute, 2021, 38, 4691-4698.	3.9	1
9	Effect of flame surface area of downward propagating flames induced by single and double laser irradiation on transition to parametric instability. Combustion and Flame, 2021, 223, 450-459.	5.2	3
10	Coal Particle Devolatilization and Soot Formation in Pulverized Coal Combustion Fields. KONA Powder and Particle Journal, 2021, 38, 168-188.	1.7	5
11	Experimental Study on Evaporation Characteristics of Light Cycle Oil Droplet under Various Ambient Conditions. Energy & Fuels, 2021, 35, 6219-6230.	5.1	3
12	Research on Promotion of Combustion of Pulverized Solid Fuel by Co-combustion of Hydrogen. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2021, 28, 68-73.	0.0	0
13	Acoustic parametric instability, its suppression and a beating instability in a mesoscale combustion tube. Combustion and Flame, 2021, 228, 277-291.	5.2	9
14	Turbulent flame propagation of polymethylmethacrylate particle clouds in an O2/N2 atmosphere. Combustion and Flame, 2021, 234, 111616.	5.2	5
15	Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure. Proceedings of the Combustion Institute, 2021, 38, 4131-4139.	3.9	44
16	Effect of Ignition Condition on the Extinction Limit for Opposed Flame Spread Over Electrical Wires in Microgravity. Fire Technology, 2020, 56, 149-168.	3.0	12
17	Influence of lithium salts on the combustion characteristics of dimethyl carbonate-based electrolytes using a wick combustion method. Combustion and Flame, 2020, 213, 314-321.	5.2	13
18	Opposed-Flow Flame Spread and Extinction in Electric Wires: The Effects of Gravity, External Radiant Heat Flux, and Wire Characteristics on Wire Flammability. Fire Technology, 2020, 56, 131-148.	3.0	14

Nozomu Назнімото

#	Article	IF	CITATIONS
19	Range of "complete―instability of flat flames propagating downward in the acoustic field in combustion tube: Lewis number effect. Combustion and Flame, 2020, 216, 326-337.	5.2	13
20	Role of wire core in extinction of opposed flame spread over thin electric wires. Combustion and Flame, 2020, 220, 7-15.	5.2	13
21	Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition. Fuel, 2020, 268, 117383.	6.4	53
22	Effects of one-dimensional migration of self-interstitial atom clusters on the decreasing behaviour of their number density in electron-irradiated <i>î±</i> -iron. Philosophical Magazine, 2020, 100, 110-125.	1.6	7
23	Effect of geometrical parameters on thermo-acoustic instability of downward propagating flames in tubes. Proceedings of the Combustion Institute, 2019, 37, 1869-1877.	3.9	12
24	Downward flame spreading over electric wire under various oxygen concentrations. Proceedings of the Combustion Institute, 2019, 37, 3817-3824.	3.9	31
25	Laser piloted ignition of electrical wire in microgravity. Proceedings of the Combustion Institute, 2019, 37, 4211-4219.	3.9	15
26	Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity?. Proceedings of the Combustion Institute, 2019, 37, 4155-4162.	3.9	27
27	Experimental study on flammability limits of electrolyte solvents in lithium-ion batteries using a wick combustion method. Experimental Thermal and Fluid Science, 2019, 109, 109858.	2.7	18
28	Experimental study on flame stability limits of lithium ion battery electrolyte solvents with organophosphorus compounds addition using a candle-like wick combustion system. Combustion and Flame, 2019, 207, 63-70.	5.2	10
29	Effect of Le on criteria of transition to secondary acoustic instability of downward-propagating flame in a tube with controlled curvature induced by external laser. Proceedings of the Combustion Institute, 2019, 37, 1887-1894.	3.9	5
30	Experimental and theoretical study of secondary acoustic instability of downward propagating flames: Higher modes and growth rates. Combustion and Flame, 2019, 205, 316-326.	5.2	11
31	Extinction limits of an ammonia/air flame propagating in a turbulent field. Fuel, 2019, 246, 178-186.	6.4	59
32	Prediction of soot formation characteristics in a pulverized-coal combustion field by large eddy simulations with the TDP model. Proceedings of the Combustion Institute, 2019, 37, 2883-2891.	3.9	16
33	Spherical turbulent flame propagation of pulverized coal particle clouds in an O2/N2 atmosphere. Proceedings of the Combustion Institute, 2019, 37, 2935-2942.	3.9	20
34	Effects of blending crude Jatropha oil and heavy fuel oil on the soot behavior of a steam atomizing burner. Renewable Energy, 2019, 136, 358-364.	8.9	15
35	Simultaneous imaging of Mie scattering, PAHs laser induced fluorescence and soot laser induced incandescence to a lab-scale turbulent jet pulverized coal flame. Proceedings of the Combustion Institute, 2019, 37, 3045-3052.	3.9	25
36	Effect of insulation melting and dripping on opposed flame spread over laboratory simulated electrical wires. Fire Safety Journal, 2018, 95, 1-10.	3.1	50

Nozomu Назнімото

#	Article	IF	CITATIONS
37	Effects of Jatropha oil blending with C-heavy oil on soot emissions and heat absorption balance characteristics for boiler combustion. Renewable Energy, 2018, 126, 924-932.	8.9	13
38	Measurement Techniques for Soot in Pulverized Coal Combustion Fields. Journal of the Society of Powder Technology, Japan, 2018, 55, 275-281.	0.1	1
39	Optical Diagnostics for Pulverized Coal Jet Flame. Journal of the Society of Powder Technology, Japan, 2018, 55, 138-146.	0.1	0
40	A numerical and experimental study of the ignition of insulated electric wire with long-term excess current supply under microgravity. Proceedings of the Combustion Institute, 2017, 36, 3063-3071.	3.9	27
41	Effect of different fuel NO models on the prediction of NO formation/reduction characteristics in a pulverized coal combustion field. Energy, 2017, 118, 47-59.	8.8	16
42	Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments. Proceedings of the Combustion Institute, 2017, 36, 2425-2432.	3.9	50
43	Dimensional Analysis for Flammability Limits of Spreading Flame over Electric Wire in Microgravity. The Proceedings of Mechanical Engineering Congress Japan, 2017, 2017, G0600105.	0.0	0
44	SOOT FORMATION CHARACTERISTICS OF PALM METHYL ESTER SPRAY FLAMES IN COUNTERFLOW SUSTAINED BY METHANE/AIR PREMIXED FLAME. Atomization and Sprays, 2017, 27, 1077-1087.	0.8	2
45	Limiting oxygen concentration (LOC) of burning polyethylene insulated wires under external radiation. Fire Safety Journal, 2016, 86, 32-40.	3.1	51
46	Primary soot particle distributions in a combustion field of 4 kW pulverized coal jet burner measured by time resolved laser induced incandescence (TiRe-LII). Journal of Thermal Science and Technology, 2016, 11, JTST0049-JTST0049.	1.1	22
47	Numerical analysis on effect of furnace scale on heat transfer mechanism of coal particles in pulverized coal combustion field. Fuel Processing Technology, 2016, 145, 20-30.	7.2	30
48	B12-O-21Development of High Pressure Gas Environmental Cell and its Application to Hydrogen Reaction. Microscopy (Oxford, England), 2015, 64, i29.1-i29.	1.5	0
49	B23-P-16Multi-layer Method combined with Nano-indentation, FIB and XTEM for Nano-hardness Measurement. Microscopy (Oxford, England), 2015, 64, i119.2-i119.	1.5	0
50	Evaporation characteristics of a palm methyl ester droplet at high ambient temperatures. Fuel, 2015, 143, 202-210.	6.4	68
51	Development of iron-base composite materials with high thermal conductivity for DEMO. Materials Research Society Symposia Proceedings, 2014, 1645, 1.	0.1	0
52	Fundamental combustion characteristics of Jatropha oil as alternative fuel for gas turbines. Fuel, 2014, 126, 194-201.	6.4	50
53	Numerical simulation of sub-bituminous coal and bituminous coal mixed combustion employing tabulated-devolatilization-process model. Energy, 2014, 71, 399-413.	8.8	33
54	Spray characterization of an air-assist pressure-swirl atomizer injecting high-viscosity Jatropha oils. Fuel, 2014, 121, 271-283.	6.4	49

#	Article	IF	CITATIONS
55	<i>In-Situ</i> Observations of Microstructure Evolution in Electron-Irradiated Multi-Wall Carbon Nanotubes. Materials Transactions, 2014, 55, 458-460.	1.2	5
56	Soot formation characteristics in a lab-scale turbulent pulverized coal flame with simultaneous planar measurements of laser induced incandescence of soot and Mie scattering of pulverized coal. Proceedings of the Combustion Institute, 2013, 34, 2435-2443.	3.9	55
57	Dependence of Dose and He on Irradiation-Hardening of Fe-Ion Irradiated Fe–8Cr Model Alloy. Materials Transactions, 2013, 54, 96-101.	1.2	5
58	Large-Eddy Simulation of Pulverized Coal Combustion in Swirling Flow. , 2013, , 1011-1017.		1
59	Numerical simulation of pulverized coal jet flame employing the TDP model. Fuel, 2012, 97, 277-287.	6.4	75
60	A numerical simulation of pulverized coal combustion employing a tabulated-devolatilization-process model (TDP model). Combustion and Flame, 2012, 159, 353-366.	5.2	98
61	Effects of Fuel Species on Soot Formation in Laminar Counterflow: Comparison Between Diesel Fuel and Palm Methyl Ester as an Alternative Fuel. , 2011, , .		Ο
62	A Numerical Simulation of Pulverized Coal Combustion Field Using a Tabulated-Devolatilization-Process Model (TDP Model) : 2nd Report, Application to a 100kg-coal/h Low NO_x Swirl Burner(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76, 1396-1405.	0.2	2
63	A Study on Combustion Characteristics of Dried Sludge Pellets by use of a Pulverized Coal Combustion Test Furnace. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2009, 88, 422-429.	0.2	6
64	Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments. Transactions of the Japan Society for Aeronautical and Space Sciences Space Technology Japan, 2009, 7, Ph_43-Ph_48.	0.2	1
65	Fundamental combustion characteristics of palm methyl ester (PME) as alternative fuel for gas turbines. Fuel, 2008, 87, 3373-3378.	6.4	95
66	A Numerical Analysis of Pulverized Coal Combustion in a Multiburner Furnace. Energy & Fuels, 2007, 21, 1950-1958.	5.1	36
67	Application of percolation model to particulate matter formation in pressurized coal combustion. Powder Technology, 2007, 172, 50-56.	4.2	5
68	Determining factor for the blowoff limit of a flame spreading in an opposed turbulent flow, in a narrow solid-fuel duct. Combustion and Flame, 2006, 147, 222-232.	5.2	26
69	Effect of Minor Alloying Element on Dispersing Nano-particles in ODS Steel. Materials Research Society Symposia Proceedings, 2006, 981, 1.	0.1	9
70	Fuel Regression Characteristics of Porous Solid Fuels for End-Burning Hybrid Rocket. The Proceedings of Conference of Hokkaido Branch, 2002, 2002.42, 84-85.	0.0	0
71	Opposed-flow flame spread in a circular duct of a solid fuel: Influence of channel height on spread rate. Proceedings of the Combustion Institute, 2002, 29, 245-250.	3.9	15
72	A Preliminary Study of End-Burning Hybrid Rocket. Part 1. Combustion Stability Journal of the Japan Society for Aeronautical and Space Sciences, 2001, 49, 33-39.	0.1	15

#	Article	IF	CITATIONS
73	A Preliminary Study of End-Burning Hybrid Rocket. Part 2. Combustion Characteristics Journal of the Japan Society for Aeronautical and Space Sciences, 2001, 49, 40-47.	0.1	14
74	511 Combustion stability of End-Burning Hybrid Rocket. The Proceedings of Conference of Hokkaido Branch, 2000, 2000.40, 202-203.	0.0	0