
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complexities underlying the breeding and deployment of Dutch elm disease resistant elms. New Forests, 2023, 54, 661-696.	1.7	18
2	Expansion of Ash Dieback towards the scattered Fraxinus excelsior range of the Italian peninsula. Biological Invasions, 2022, 24, 1359-1373.	2.4	4
3	Invasion Frameworks: a Forest Pathogen Perspective. Current Forestry Reports, 2022, 8, 74-89.	7.4	14
4	Novel Insights Into Refugia at the Southern Margin of the Distribution Range of the Endangered Species Ulmus laevis. Frontiers in Plant Science, 2022, 13, 826158.	3.6	7
5	Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut. Plants, 2022, 11, 1239.	3.5	4
6	Globalization, invasive forest pathogen species, and forest tree health. , 2022, , 61-76.		3
7	Invasive Alien Plant Pathogens: The Need of New Detection Methods. Methods in Molecular Biology, 2022, , 111-118.	0.9	1
8	Metabarcoding reveals southern hemisphere fungal endophytes within wood of cultivated Proteaceae in Portugal. European Journal of Plant Pathology, 2021, 160, 173-184.	1.7	7
9	Rapid diagnostics for Gnomoniopsis smithogilvyi (syn. Gnomoniopsis castaneae) in chestnut nuts: new challenges by using LAMP and real-time PCR methods. AMB Express, 2021, 11, 105.	3.0	8
10	Biological control of emerging forest diseases: How can we move from dreams to reality?. Forest Ecology and Management, 2021, 496, 119377.	3.2	40
11	Forest Health in Italy: Learning From the Xylella Incursion. Frontiers in Forests and Global Change, 2021, 4, .	2.3	3
12	First report of Erwina amylovora in Tuscany, Italy. Phytopathologia Mediterranea, 2021, 60, 253-257.	1.3	1
13	A worldwide perspective of the legislation and regulations governing sentinel plants. Biological Invasions, 2020, 22, 353-362.	2.4	7
14	Real-time loop-mediated isothermal amplification assay for rapid detection of <i>Fusarium circinatum</i> . BioTechniques, 2020, 69, 11-17.	1.8	17
15	Volatile organic compounds (VOC) as biomarkers for detection of <i>Ceratocystis platani</i> . Forest Pathology, 2020, 50, e12618.	1.1	3
16	Global Geographic Distribution and Host Range of Fusarium circinatum, the Causal Agent of Pine Pitch Canker. Forests, 2020, 11, 724.	2.1	45
17	Fast and reliable molecular methods to detect fungal pathogens in woody plants. Applied Microbiology and Biotechnology, 2020, 104, 2453-2468.	3.6	71
18	Early Detection of Fungal Plant Pathogens by Real-Time Quantitative PCR: The Case of Diplodia sapinea on Pine. Methods in Molecular Biology, 2020, 2065, 95-104.	0.9	2

#	Article	IF	CITATIONS
19	Caliciopsis moriondi, a new species for a fungus long confused with the pine pathogen C. pinea. MycoKeys, 2020, 73, 87-108.	1.9	7
20	Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. Tree Physiology, 2019, 39, 31-44.	3.1	6
21	Fungal Planet description sheets: 868–950. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2019, 42, 291-473.	4.4	124
22	Real-time loop-mediated isothermal amplification: an early-warning tool for quarantine plant pathogen detection. AMB Express, 2019, 9, 50.	3.0	50
23	Complex Insect–Pathogen Interactions in Tree Pandemics. Frontiers in Physiology, 2019, 10, 550.	2.8	21
24	Temporal patterns of airborne Phytophthora spp. in a woody plant nursery area detected using real-time PCR. Aerobiologia, 2019, 35, 201-214.	1.7	9
25	Pine Pitch Canker (PPC): Pathways of Pathogen Spread and Preventive Measures. Forests, 2019, 10, 1158.	2.1	19
26	Safeguarding global plant health: the rise of sentinels. Journal of Pest Science, 2019, 92, 29-36.	3.7	45
27	Detection and quantification of the air inoculum of Caliciopsis pinea in a plantation of Pinus radiata in Italy. IForest, 2019, 12, 193-198.	1.4	6
28	Geosmithia-Ophiostoma: a New Fungus-Fungus Association. Microbial Ecology, 2018, 75, 632-646.	2.8	13
29	Tracing the role of human civilization in the globalization of plant pathogens. ISME Journal, 2018, 12, 647-652.	9.8	77
30	Phytophthora nicotianae and P. cryptogea causing gummosis of citrus crops in Tunisia. Tropical Plant Pathology, 2018, 43, 36-48.	1.5	4
31	<i>Ceratocystis platani</i> is killing plane trees in Istanbul (Turkey). Forest Pathology, 2018, 48, e12375.	1.1	9
32	Duplex real-time PCR assay for the simultaneous detection of Caliciopsis pinea and Fusarium circinatum in pine samples. Applied Microbiology and Biotechnology, 2018, 102, 7135-7146.	3.6	20
33	Impact of Non-native Invertebrates and Pathogens on Market Forest Tree Resources. , 2017, , 103-117.		20
34	Canker Stain: A Lethal Disease Destroying Iconic Plane Trees. Plant Disease, 2017, 101, 645-658.	1.4	66
35	Occurrence of <i>Pythium</i> and <i>Phytopythium</i> species isolated from citrus trees infected with gummosis disease in tunisia. Archives of Phytopathology and Plant Protection, 2017, 50, 286-302.	1.3	18
36	Ecology of invasive forest pathogens. Biological Invasions, 2017, 19, 3183-3200.	2.4	65

#	Article	IF	CITATIONS
37	Alien Pathogens on the Horizon: Opportunities for Predicting their Threat to Wildlife. Conservation Letters, 2017, 10, 477-484.	5.7	96
38	Risk assessment and reduction options for CeratocystisÂplatani in the EU. EFSA Journal, 2016, 14, e04640.	1.8	4
39	Drivers of emerging fungal diseases of forest trees. Forest Ecology and Management, 2016, 381, 235-246.	3.2	92
40	First Record of Ash Dieback Caused by <i>Hymenoscyphus fraxineus</i> on <i>Fraxinus excelsior</i> in the Apennines (Tuscany, Italy). Plant Disease, 2016, 100, 535.	1.4	14
41	The potential of symptomless potted plants for carrying invasive soilborne plant pathogens. Diversity and Distributions, 2015, 21, 1218-1229.	4.1	77
42	<i>Hymenoscyphus fraxineus</i> mycelial growth on media containing leaf extracts of different Oleaceae. Forest Pathology, 2015, 45, 540-543.	1.1	6
43	Dutch elm disease and elm bark beetles: a century of association. IForest, 2015, 8, 126-134.	1.4	94
44	Taxonomic dissimilarity in patterns of interception and establishment of alien arthropods, nematodes and pathogens affecting woody plants in <scp>E</scp> urope. Diversity and Distributions, 2015, 21, 36-45.	4.1	58
45	Morphological and molecular characterisation of Geosmithia species on European elms. Fungal Biology, 2015, 119, 1063-1074.	2.5	17
46	Widespread horizontal transfer of the cerato-ulmin gene between Ophiostoma novo-ulmi and Geosmithia species. Fungal Biology, 2014, 118, 663-674.	2.5	16
47	Likelihood of establishment of tree pests and diseases based on their worldwide occurrence as determined by hierarchical cluster analysis. Forest Ecology and Management, 2014, 315, 103-111.	3.2	39
48	Hybridization and introgression between the exotic Siberian elm, Ulmus pumila, and the native Field elm, U. minor, in Italy. Biological Invasions, 2013, 15, 2717-2730.	2.4	39
49	Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist, 2013, 197, 238-250.	7.3	458
50	Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay. Applied and Environmental Microbiology, 2013, 79, 5394-5404.	3.1	46
51	Mechanisms governing the responses to anthracnose pathogen in Juglans spp Journal of Biotechnology, 2012, 159, 251-264.	3.8	17
52	â€~Morfeo' Elm: a new variety resistant to Dutch elm disease. Forest Pathology, 2012, 42, 171-176.	1.1	18
53	<i>Leptoglossus occidentalis</i> and <i>Diplodia pinea</i> : a new insectâ€fungus association in Mediterranean forests. Forest Pathology, 2012, 42, 246-251.	1.1	43
54	Sarcodontia pachyodon: a Canker and White-rot Agent of Plane-trees. Journal of Phytopathology, 2011, 159, 117-119.	1.0	3

#	Article	IF	CITATIONS
55	Bud dormancy release in elm (Ulmus spp.) clonesa case study of photoperiod and temperature responses. Tree Physiology, 2010, 30, 264-274.	3.1	46
56	Genotype×environment interaction and growth stability of several elm clones resistant to Dutch elm disease. Forest Ecology and Management, 2010, 260, 1017-1025.	3.2	14
57	New proteins orthologous to cerato-platanin in various Ceratocystis species and the purification and characterization of cerato-populin from Ceratocystis populicola. Applied Microbiology and Biotechnology, 2009, 84, 309-322.	3.6	28
58	Avoidance by early flushing: a new perspective on Dutch elm disease research. IForest, 2009, 2, 143-153.	1.4	34
59	Breeding against Dutch elm disease adapted to the Mediterranean climate. Euphytica, 2008, 163, 45-56.	1.2	29
60	Persistence of some pine pathogens in coarse woody debris and cones in a Pinus pinea forest. Forest Ecology and Management, 2008, 256, 502-506.	3.2	34
61	â€~Fiorente' and â€~Arno' Elm Trees. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 712-714.	1.0	9
62	Variation in timing of bud-burst of Ulmus minor clones from different geographical origins. Canadian Journal of Forest Research, 2006, 36, 1982-1991.	1.7	24
63	Pathogenicity of four Phytophthora Species on Wild Cherry and Italian Alder Seedlings. Journal of Phytopathology, 2006, 154, 163-167.	1.0	14
64	Variation among Italian and French elm clones in their response to Ophiostoma novo-ulmi inoculation. Forest Pathology, 2005, 35, 183-193.	1.1	28
65	Analysis of the Italian Dutch Elm Disease Fungal Population. Journal of Phytopathology, 2005, 153, 73-79.	1.0	25
66	Susceptibility of some Mesophilic Hardwoods to Alder Phytophthora. Journal of Phytopathology, 2003, 151, 406-410.	1.0	25
67	Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in Southern Italy. Forest Ecology and Management, 2003, 180, 37-44.	3.2	31
68	'San Zanobi' and 'Plinio' Elm Trees. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 1139-1141.	1.0	13
69	A New Phytophthora Root Disease of Alder in Italy. Plant Disease, 2001, 85, 560-560.	1.4	13
70	Analysis of the Italian population of Ceratocystis fimbriata f.sp. platani using RAPD and minisatellite markers. Plant Pathology, 2000, 49, 461-467.	2.4	36
71	Genetic variability of the â€`bark canker resistance' character in several natural provenances ofCupressus sempervirens. Forest Pathology, 2000, 30, 87-96.	1.1	20
72	The environmental effect on crown shape of common cypress clones in the Mediterranean countries. Annals of Forest Science, 2000, 57, 277-286.	2.0	3

#	Article	IF	CITATIONS
73	Rootstock effects on the reaction of grafted cypress to it Seiridium cardinale bark canker disease. Agronomy for Sustainable Development, 2000, 20, 325-331.	0.8	1
74	Purification, Characterization, and Amino Acid Sequence of Cerato-platanin, a New Phytotoxic Protein from Ceratocystis fimbriata f. sp. platani. Journal of Biological Chemistry, 1999, 274, 24959-24964.	3.4	165
75	Effect of Seiridium cardinale on growth of cypress (Cupressus sempervirens) clones. Canadian Journal of Forest Research, 1995, 25, 109-113.	1.7	5
76	Phellinus torulosus on Cupressus sempervirens in Italy. Forest Pathology, 1994, 24, 238-240.	1.1	4
77	Preliminary dendroecological survey on pedunculate oak (Quercus robur L) stands in Tuscany (Italy). Annales Des Sciences Forestières, 1994, 51, 1-10.	1.2	18
78	Plant pathogen evolution and climate change CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-8.	1.0	20
79	Forewarned is forearmed: harmonized approaches for early detection of potentially invasive pests and pathogens in sentinel plantings. NeoBiota, 0, 47, 95-123.	1.0	25
80	Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 0, 58, 107-127.	1.0	28
81	Harmonising the fields of invasion science and forest pathology. NeoBiota, 0, 62, 301-332.	1.0	16