List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 450-459.	3.4	9
2	Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics, 2022, 12, 1030-1060.	10.0	49
3	Structural Stability and Antigenicity of Universal Equine H3N8 Hemagglutinin Trimer upon Release from Polyanhydride Nanoparticles and Pentablock Copolymer Hydrogels. ACS Biomaterials Science and Engineering, 2022, 8, 2500-2507.	5.2	5
4	Polyanhydride nanoparticles stabilize pancreatic cancer antigen <scp>MUC4β</scp> . Journal of Biomedical Materials Research - Part A, 2021, 109, 893-902.	4.0	29
5	Nanotechnology-mediated therapeutic strategies against synucleinopathies in neurodegenerative disease. Current Opinion in Chemical Engineering, 2021, 31, 100673.	7.8	2
6	Nanomedicines to counter microbial barriers and antimicrobial resistance. Current Opinion in Chemical Engineering, 2021, 31, 100672.	7.8	6
7	Prefusion F–Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. Journal of Immunology, 2021, 206, 2122-2134.	0.8	6
8	Evaluation of the In vivo Antitumor Activity of Polyanhydride IL-1α Nanoparticles. Journal of Visualized Experiments, 2021, , .	0.3	1
9	Single-dose combination nanovaccine induces both rapid and durable humoral immunity and toxin neutralizing antibody responses against Bacillus anthracis. Vaccine, 2021, 39, 3862-3870.	3.8	12
10	Self-assembling synthetic nanoadjuvant scaffolds cross-link B cell receptors and represent new platform technology for therapeutic antibody production. Science Advances, 2021, 7, .	10.3	9
11	Bovine NK-lysin peptides exert potent antimicrobial activity against multidrug-resistant Salmonella outbreak isolates. Scientific Reports, 2021, 11, 19276.	3.3	8
12	Biomaterial nanocarrier-driven mechanisms to modulate anti-tumor immunity. Current Opinion in Biomedical Engineering, 2021, 20, 100322.	3.4	1
13	Synthesis and Characterization of Rapidly Degrading Polyanhydrides as Vaccine Adjuvants. ACS Biomaterials Science and Engineering, 2020, 6, 265-276.	5.2	12
14	Development of a subcutaneous ear implant to deliver an anaplasmosis vaccine to dairy steers. Journal of Animal Science, 2020, 98, .	0.5	3
15	Biodistribution of degradable polyanhydride particles in Aedes aegypti tissues. PLoS Neglected Tropical Diseases, 2020, 14, e0008365.	3.0	5
16	Enzyme Immunoassay-Based Platform for Accurate Detection of Serum Pathological α-Synuclein in Parkinson's Disease Patients. ACS Chemical Neuroscience, 2020, 11, 4179-4190.	3.5	6
17	Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Current Topics in Microbiology and Immunology, 2020, 433, 29-76.	1.1	12
18	<p>Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8⁺ T Cell Memory and Delayed Tumor Progression</p> . International Journal of Nanomedicine, 2020, Volume 15, 6579-6592.	6.7	10

#	Article	IF	CITATIONS
19	Applications of Nanovaccines for Disease Prevention in Cattle. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608050.	4.1	27
20	Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydrate Polymers, 2020, 243, 116434.	10.2	38
21	High-Throughput Synthesis and Screening of Rapidly Degrading Polyanhydride Nanoparticles. ACS Combinatorial Science, 2020, 22, 172-183.	3.8	6
22	A single dose polyanhydride-based nanovaccine against paratuberculosis infection. Npj Vaccines, 2020, 5, 15.	6.0	21
23	Pentaerythritol-based lipid A bolsters the antitumor efficacy of a polyanhydride particle-based cancer vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102055.	3.3	11
24	Effective mosaic-based nanovaccines against avian influenza in poultry. Vaccine, 2019, 37, 5051-5058.	3.8	17
25	Vitamin A deficiency impairs the immune response to intranasal vaccination and RSV infection in neonatal calves. Scientific Reports, 2019, 9, 15157.	3.3	46
26	Single-dose combination nanovaccine induces both rapid and long-lived protection against pneumonic plague. Acta Biomaterialia, 2019, 100, 326-337.	8.3	22
27	Interleukin-1 alpha increases anti-tumor efficacy of cetuximab in head and neck squamous cell carcinoma. , 2019, 7, 79.		28
28	Sustained antigen release polyanhydride-based vaccine platform for immunization against bovine brucellosis. Heliyon, 2019, 5, e02370.	3.2	11
29	Single dose combination nanovaccine provides protection against influenza A virus in young and aged mice. Biomaterials Science, 2019, 7, 809-821.	5.4	36
30	STING pathway stimulation results in a differentially activated innate immune phenotype associated with low nitric oxide and enhanced antibody titers in young and aged mice. Vaccine, 2019, 37, 2721-2730.	3.8	19
31	Safety and biocompatibility of injectable vaccine adjuvants composed of thermogelling block copolymer gels. Journal of Biomedical Materials Research - Part A, 2019, 107, 1754-1762.	4.0	13
32	Data Analytics Approach for Rational Design of Nanomedicines with Programmable Drug Release. Molecular Pharmaceutics, 2019, 16, 1917-1928.	4.6	14
33	Design and synthesis of multivalent α-1,2-trimannose-linked bioerodible microparticles for applications in immune response studies of <i>Leishmania major</i> infection. Beilstein Journal of Organic Chemistry, 2019, 15, 623-632.	2.2	4
34	Pentablock Copolymer Micelle Nanoadjuvants Enhance Cytosolic Delivery of Antigen and Improve Vaccine Efficacy while Inducing Low Inflammation. ACS Biomaterials Science and Engineering, 2019, 5, 1332-1342.	5.2	13
35	Analyzing Drug Release Kinetics from Water-Soluble Polymers. Industrial & Engineering Chemistry Research, 2019, 58, 7428-7437.	3.7	12
36	Nanotherapeutic provides dose sparing and improved antimicrobial activity against Brucella melitensis infections. Journal of Controlled Release, 2019, 294, 288-297.	9.9	21

#	Article	IF	CITATIONS
37	Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. International Journal of Pharmaceutics, 2019, 555, 49-62.	5.2	163
38	Single Dose of a Polyanhydride Particle-Based Vaccine Generates Potent Antigen-Specific Antitumor Immune Responses. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 855-863.	2.5	22
39	Amphiphilic polyanhydride-based recombinant MUC4β-nanovaccine activates dendritic cells. Genes and Cancer, 2019, 10, 52-62.	1.9	23
40	Intranasal delivery of influenza antigen by nanoparticles, but not NKT-cell adjuvant differentially induces the expression of B-cell activation factors in mice and swine. Cellular Immunology, 2018, 329, 27-30.	3.0	12
41	Automated High-Throughput Synthesis of Protein-Loaded Polyanhydride Nanoparticle Libraries. ACS Combinatorial Science, 2018, 20, 298-307.	3.8	11
42	Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Scientific Reports, 2018, 8, 3021.	3.3	53
43	A polyanhydride-based implantable single dose vaccine platform for long-term immunity. Vaccine, 2018, 36, 1024-1025.	3.8	6
44	A single dose polyanhydride-based vaccine platform promotes and maintains anti-GnRH antibody titers. Vaccine, 2018, 36, 1016-1023.	3.8	10
45	pH-Responsive Microencapsulation Systems for the Oral Delivery of Polyanhydride Nanoparticles. Biomacromolecules, 2018, 19, 793-802.	5.4	28
46	Ligand-cascading nano-delivery devices to enable multiscale targeting of anti-neurodegenerative therapeutics. Biomedical Materials (Bristol), 2018, 13, 034102.	3.3	11
47	Intestinal organoids containing poly(lacticâ€∢i>coâ€glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. Journal of Biomedical Materials Research - Part A, 2018, 106, 876-886.	4.0	92
48	Emerging trends in the immunotherapy of pancreatic cancer. Cancer Letters, 2018, 417, 35-46.	7.2	77
49	Surface engineered polyanhydride-based oral Salmonella subunit nanovaccine for poultry. International Journal of Nanomedicine, 2018, Volume 13, 8195-8215.	6.7	26
50	Biodegradable polyanhydrideâ€based nanomedicines for blood to brain drug delivery. Journal of Biomedical Materials Research - Part A, 2018, 106, 2881-2890.	4.0	19
51	Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity. Frontiers in Immunology, 2018, 9, 325.	4.8	28
52	Polyanhydride Nanovaccine Induces Robust Pulmonary B and T Cell Immunity and Confers Protection Against Homologous and Heterologous Influenza A Virus Infections. Frontiers in Immunology, 2018, 9, 1953.	4.8	43
53	Polyanhydride Nanoparticle Interactions with Host Serum Proteins and Their Effects on Bone Marrow Derived Macrophage Activation. ACS Biomaterials Science and Engineering, 2017, 3, 160-168.	5.2	7
54	Polyanhydride nanovaccine against swine influenza virus in pigs. Vaccine, 2017, 35, 1124-1131.	3.8	41

#	Article	IF	CITATIONS
55	Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice. Antioxidants and Redox Signaling, 2017, 27, 1048-1066.	5.4	107
56	Functionalization promotes pathogenâ€mimicking characteristics of polyanhydride nanoparticle adjuvants. Journal of Biomedical Materials Research - Part A, 2017, 105, 2762-2771.	4.0	14
57	Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. Journal of Controlled Release, 2017, 247, 194-205.	9.9	102
58	The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomaterialia, 2017, 50, 417-427.	8.3	45
59	Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 809-820.	3.3	80
60	Cellular Internalization Mechanisms of Polyanhydride Particles: Implications for Rational Design of Drug Delivery Vehicles. Journal of Biomedical Nanotechnology, 2016, 12, 1544-1552.	1.1	34
61	Polyanhydride Nanovaccines Induce Germinal Center B Cell Formation and Sustained Serum Antibody Responses. Journal of Biomedical Nanotechnology, 2016, 12, 1303-1311.	1.1	29
62	Rational Design of Targeted Next-Generation Carriers for Drug and Vaccine Delivery. Annual Review of Biomedical Engineering, 2016, 18, 25-49.	12.3	47
63	Combination Nanovaccine Demonstrates Synergistic Enhancement in Efficacy against Influenza. ACS Biomaterials Science and Engineering, 2016, 2, 368-374.	5.2	31
64	Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2016, 11, 259-278.	4.1	93
65	Hemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity. International Journal of Nanomedicine, 2015, 10, 229.	6.7	33
66	Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms. PLoS Neglected Tropical Diseases, 2015, 9, e0004173.	3.0	37
67	Sustained release and stabilization of therapeutic antibodies using amphiphilic polyanhydride nanoparticles. Chemical Engineering Science, 2015, 125, 98-107.	3.8	26
68	Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 715-729.	3.3	46
69	Pulmonary Biodistribution and Cellular Uptake of Intranasally Administered Monodisperse Particles. Pharmaceutical Research, 2015, 32, 1368-1382.	3.5	18
70	Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 751-767.	3.3	98
71	Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. Journal of Controlled Release, 2015, 219, 622-631.	9.9	25
72	Nano-enabled delivery of diverse payloads across complex biological barriers. Journal of Controlled Release, 2015, 219, 548-559.	9.9	54

#	Article	IF	CITATIONS
73	Multienzyme Immobilization and Colocalization on Nanoparticles Enabled by DNA Hybridization. Industrial & Engineering Chemistry Research, 2015, 54, 10212-10220.	3.7	26
74	Safety and Biocompatibility of Carbohydrate-Functionalized Polyanhydride Nanoparticles. AAPS Journal, 2015, 17, 256-267.	4.4	41
75	Polyanhydride nanovaccine platform enhances antigen-specific cytotoxic T cell responses. Technology, 2014, 02, 171-175.	1.4	23
76	Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1387-1406.	3.5	43
77	Facile Fabrication of Polyanhydride/Anesthetic Nanoparticles with Tunable Release Kinetics. Advanced Healthcare Materials, 2014, 3, 843-847.	7.6	10
78	Effect of nanovaccine chemistry on humoral immune response kinetics and maturation. Nanoscale, 2014, 6, 13770-13778.	5.6	47
79	Lung Deposition and Cellular Uptake Behavior of Pathogenâ€Mimicking Nanovaccines in the First 48 Hours. Advanced Healthcare Materials, 2014, 3, 1071-1077.	7.6	24
80	Materialsâ€based strategies for multiâ€enzyme immobilization and coâ€localization: A review. Biotechnology and Bioengineering, 2014, 111, 209-222.	3.3	221
81	Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 2014, 190, 75-81.	9.9	395
82	Structural and antigenic stability of H5N1 hemagglutinin trimer upon release from polyanhydride nanoparticles. Journal of Biomedical Materials Research - Part A, 2014, 102, 4161-4168.	4.0	44
83	Nanoparticle Chemistry and Functionalization Differentially Regulates Dendritic Cell–Nanoparticle Interactions and Triggers Dendritic Cell Maturation. Particle and Particle Systems Characterization, 2014, 31, 1269-1280.	2.3	25
84	Vaccine Technologies Against Avian Influenza: Current Approaches and New Directions. Journal of Biomedical Nanotechnology, 2014, 10, 2261-2294.	1.1	7
85	A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms. Scientific Reports, 2014, 4, 3775.	3.3	27
86	Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles. Acta Biomaterialia, 2013, 9, 8262-8271.	8.3	58
87	Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. Journal of Controlled Release, 2013, 172, 1020-1034.	9.9	193
88	Characterizing the antitumor response in mice treated with antigen-loaded polyanhydride microparticles. Acta Biomaterialia, 2013, 9, 5583-5589.	8.3	33
89	Biomimetic Multienzyme Complexes Based on Nanoscale Platforms. AICHE Journal, 2013, 59, 355-360.	3.6	32
90	Single immunization with a suboptimal antigen dose encapsulated into polyanhydride microparticles promotes high titer and avid antibody responses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 91-98.	3.4	40

#	Article	IF	CITATIONS
91	Functionalization of polyanhydride microparticles with di-mannose influences uptake by and intracellular fate within dendritic cells. Acta Biomaterialia, 2013, 9, 8902-8909.	8.3	41
92	Evaluation of Biocompatibility and Administration Site Reactogenicity of Polyanhydrideâ€Particleâ€Based Platform for Vaccine Delivery. Advanced Healthcare Materials, 2013, 2, 369-378.	7.6	59
93	Combinatorial evaluation of in vivo distribution of polyanhydride particle-based platforms for vaccine delivery. International Journal of Nanomedicine, 2013, 8, 2213.	6.7	7
94	Harvesting Murine Alveolar Macrophages and Evaluating Cellular Activation Induced by Polyanhydride Nanoparticles. Journal of Visualized Experiments, 2012, , e3883.	0.3	9
95	High-throughput Synthesis of Carbohydrates and Functionalization of Polyanhydride Nanoparticles. Journal of Visualized Experiments, 2012, , .	0.3	5
96	Block Copolymer-Quantum Dot Micelles for Multienzyme Colocalization. Langmuir, 2012, 28, 17389-17395.	3.5	32
97	Analyzing Cellular Internalization of Nanoparticles and Bacteria by Multi-spectral Imaging Flow Cytometry. Journal of Visualized Experiments, 2012, , e3884.	0.3	40
98	Chemistry-dependent adsorption of serum proteins onto polyanhydride microparticles differentially influences dendritic cell uptake and activation. Acta Biomaterialia, 2012, 8, 3618-3628.	8.3	20
99	Combinatorial Synthesis of and High-throughput Protein Release from Polymer Film and Nanoparticle Libraries. Journal of Visualized Experiments, 2012, , .	0.3	5
100	Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using "pathogen-like―amphiphilic polyanhydride nanoparticles. Biomaterials, 2012, 33, 4762-4772.	11.4	80
101	Mannose-Functionalized "Pathogen-like―Polyanhydride Nanoparticles Target C-Type Lectin Receptors on Dendritic Cells. Molecular Pharmaceutics, 2011, 8, 1877-1886.	4.6	118
102	Identifying Factors Controlling Protein Release from Combinatorial Biomaterial Libraries via Hybrid Data Mining Methods. ACS Combinatorial Science, 2011, 13, 50-58.	3.8	23
103	Mathematical modeling of polymer erosion: Consequences for drug delivery. International Journal of Pharmaceutics, 2011, 418, 104-114.	5.2	90
104	Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials, 2011, 32, 6815-6822.	11.4	124
105	Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomaterialia, 2011, 7, 2857-2864.	8.3	111
106	Amphiphilic Polyanhydride Films Promote Neural Stem Cell Adhesion and Differentiation. Tissue Engineering - Part A, 2011, 17, 2533-2541.	3.1	5
107	Design of a Protective Single-Dose Intranasal Nanoparticle-Based Vaccine Platform for Respiratory Infectious Diseases. PLoS ONE, 2011, 6, e17642.	2.5	115
108	Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants. Scientific Reports, 2011, 1, 198.	3.3	75

#	Article	IF	CITATIONS
109	Lipocalin-2-loaded amphiphilic polyanhydride microparticles accelerate cell migration. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1237-52.	3.5	8
110	Encapsulation into amphiphilic polyanhydride microparticles stabilizes Yersinia pestis antigens. Acta Biomaterialia, 2010, 6, 3110-3119.	8.3	74
111	Protein adsorption on biodegradable polyanhydride microparticles. Journal of Biomedical Materials Research - Part A, 2010, 95A, 40-48.	4.0	22
112	Dissolution of styrene–butadiene block copolymers in biodiesel. Journal of Applied Polymer Science, 2010, 118, 1859-1866.	2.6	6
113	A Novel High Throughput Method to Investigate Polymer Dissolution. Macromolecular Rapid Communications, 2010, 31, 385-390.	3.9	6
114	High-throughput analysis of protein stability in polyanhydride nanoparticles. Acta Biomaterialia, 2010, 6, 3873-3881.	8.3	55
115	Dissolution of waste plastics in biodiesel. Polymer Engineering and Science, 2010, 50, 863-870.	3.1	20
116	Tracking Chemical Processing Pathways in Combinatorial Polymer Libraries via Data Mining. ACS Combinatorial Science, 2010, 12, 270-277.	3.3	23
117	Effect of Mesoporosity on Thermal and Mechanical Properties of Polystyrene/Silica Composites. ACS Applied Materials & Interfaces, 2010, 2, 41-47.	8.0	59
118	Measurements of diffusion thickness at polymer interfaces by nanoindentation: A numerically calibrated experimental approach. Journal of Materials Research, 2009, 24, 985-992.	2.6	10
119	Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 938-947.	3.4	80
120	Vaccine adjuvants: Current challenges and future approaches. Journal of Pharmaceutical Sciences, 2009, 98, 1278-1316.	3.3	218
121	Polymer Chemistry Influences Monocytic Uptake of Polyanhydride Nanospheres. Pharmaceutical Research, 2009, 26, 683-690.	3.5	99
122	The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells. Biomaterials, 2009, 30, 5131-5142.	11.4	65
123	Combinatorial/High Throughput Methods for the Determination of Polyanhydride Phase Behavior. ACS Combinatorial Science, 2009, 11, 820-828.	3.3	16
124	High Throughput Cell-Based Screening of Biodegradable Polyanhydride Libraries. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 634-645.	1.1	33
125	Immunomodulatory biomaterials. International Journal of Pharmaceutics, 2008, 364, 265-271.	5.2	83
126	Combinatorial design of biomaterials for drug delivery: opportunities and challenges. Expert Opinion on Drug Delivery, 2008, 5, 837-846.	5.0	21

#	Article	IF	CITATIONS
127	Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Physical Review B, 2007, 76, .	3.2	84
128	Cobalt Ferrite Nanocrystals: Out-Performing Magnetotactic Bacteria. ACS Nano, 2007, 1, 228-233.	14.6	86
129	Structure–property relationships in acrylate/epoxy interpenetrating polymer networks: Effects of the reaction sequence and composition. Journal of Applied Polymer Science, 2007, 104, 891-901.	2.6	18
130	Protein-Mediated Synthesis of Uniform Superparamagnetic Magnetite Nanocrystals. Advanced Functional Materials, 2007, 17, 951-957.	14.9	154
131	Combinatorial Methods and Informatics Provide Insight into Physical Properties and Structure Relationships during IPN Formation. Macromolecular Rapid Communications, 2007, 28, 972-976.	3.9	22
132	Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials, 2007, 28, 108-116.	11.4	111
133	The role of microsphere fabrication methods on the stability and release kinetics of ovalbumin encapsulated in polyanhydride microspheres. Journal of Microencapsulation, 2006, 23, 832-843.	2.8	47
134	Problem-Based Learning Biotechnology Courses in Chemical Engineering. Biotechnology Progress, 2006, 22, 173-178.	2.6	3
135	The effect of interpenetrating polymer network formation on polymerization kinetics in an epoxyâ€acrylate system. Polymer, 2006, 47, 1108-1118.	3.8	52
136	Protein stability in the presence of polymer degradation products: Consequences for controlled release formulations. Biomaterials, 2006, 27, 3312-3320.	11.4	96
137	Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms. Journal of Biomedical Materials Research - Part A, 2006, 76A, 102-110.	4.0	116
138	Single dose vaccine based on biodegradable polyanhydride microspheres can modulate immune response mechanism. Journal of Biomedical Materials Research - Part A, 2006, 76A, 798-810.	4.0	106
139	A new kinetic model for interdiffusion at semicrystalline polymer interfaces. Polymer, 2005, 46, 2266-2275.	3.8	17
140	Effect of Polydispersity on the Phase Behavior of Polymer Blends. Macromolecular Rapid Communications, 2005, 26, 533-536.	3.9	7
141	Morphology of polyanhydride copolymers: Time-resolved small-angle X-ray scattering studies of crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 463-477.	2.1	11
142	Nanoscale Morphology of Polyanhydride Copolymers. Macromolecules, 2005, 38, 8468-8472.	4.8	12
143	Parallel Synthesis and High Throughput Dissolution Testing of Biodegradable Polyanhydride Copolymers. ACS Combinatorial Science, 2005, 7, 921-928.	3.3	30
144	Molecular Description of Erosion Phenomena in Biodegradable Polymers. Macromolecules, 2005, 38, 1989-1999.	4.8	31

BALAJI NARASIMHAN

#	Article	IF	CITATIONS
145	SURFACE-ERODIBLE BIOMATERIALS FOR DRUG DELIVERY. Advances in Chemical Engineering, 2004, , 169-218.	0.9	12
146	Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. Journal of Controlled Release, 2004, 94, 129-141.	9.9	170
147	Encapsulation, stabilization, and release of BSA-FITC from polyanhydride microspheres. Journal of Controlled Release, 2004, 100, 97-109.	9.9	114
148	Understanding polyanhydride blend phase behavior using scattering, microscopy, and molecular simulations. Polymer, 2004, 45, 3329-3340.	3.8	26
149	Fracture behavior at partially miscible polymer interfaces. Polymer Engineering and Science, 2004, 44, 929-939.	3.1	7
150	Interfacial adhesion mechanisms in incompatible semicrystalline polymer systems. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2667-2679.	2.1	24
151	Rapid Synthesis of Polyanhydrides by Microwave Polymerization. Macromolecular Rapid Communications, 2004, 25, 330-333.	3.9	35
152	Phase behavior of semicrystalline polymer blends. Polymer, 2004, 45, 3671-3679.	3.8	16
153	Interdiffusion and phase behavior at homopolymer/random copolymer interfaces. Polymer, 2003, 44, 729-741.	3.8	23
154	Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides. Journal of Controlled Release, 2002, 82, 115-125.	9.9	105
155	Quantifying phase behavior in partially miscible polystyrene/poly(styrene-co-4-bromostyrene) blends. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 255-271.	2.1	11
156	Relating fracture energy to entanglements at partially miscible polymer interfaces. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2292-2302.	2.1	18
157	Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials, 2002, 23, 4405-4412.	11.4	144
158	Microphase separation in bioerodible copolymers for drug delivery. Biomaterials, 2001, 22, 201-210.	11.4	101
159	Mathematical models describing polymer dissolution: consequences for drug delivery. Advanced Drug Delivery Reviews, 2001, 48, 195-210.	13.7	163
160	High-yield resin fractionation using a liquid/liquid centrifuge. , 2000, 3999, 513.		1
161	Microstructural Characterization of Polyanhydride Blends for Controlled Drug Delivery. Materials Research Society Symposia Proceedings, 2000, 662, 1.	0.1	1
162	Novel strategies for novolak resin fractionation: Consequences for advanced photoresist applications. Polymer Engineering and Science, 2000, 40, 2251-2261.	3.1	4

BALAJI NARASIMHAN

0

#	Article	IF	CITATIONS
163	Alternate novolak resin fractionation. , 1999, , .		1
164	Preparation of lower-dispersity fractionated novolak resins by ultracentrifugation. , 1999, , .		0
165	The physics of polymer dissolution: Modeling approaches and experimental behavior. Advances in Polymer Science, 1997, , 157-207.	0.8	44
166	Molecular Analysis of Drug Delivery Systems Controlled by Dissolution of the Polymer Carrier. Journal of Pharmaceutical Sciences, 1997, 86, 297-304.	3.3	161
167	Zero-order release of micro- and macromolecules from polymeric devices: the role of the burst effect. Journal of Controlled Release, 1997, 47, 13-20.	9.9	92
168	On the Importance of Chain Reptation in Models of Dissolution of Glassy Polymers. Macromolecules, 1996, 29, 3283-3291.	4.8	94
169	Disentanglement and reptation during dissolution of rubbery polymers. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 947-961.	2.1	78
170	Biomaterials Informatics. , 0, , 163-200.		3
171	Combinatorial Materials Science: Measures of Success. , 0, , 1-20.		4
172	Polymeric Discrete Libraries for High-Throughput Materials Science: Conventional and Microfluidic Library Fabrication and Synthesis. , 0, , 51-79.		1
173	Combinatorial Approaches and Molecular Evolution of Homogeneous Catalysts. , 0, , 121-162.		1
174	Strategies in the Use of Atomic Force Microscopy as a Multiplexed Readout Tool of Chip-Scale Protein Motifs. , 0, , 81-107.		2
175	Combinatorial Materials Science: Challenges and Outlook. , 0, , 225-229.		0
176	Experimental Design in High-Throughput Systems. , 0, , 21-49.		0
177	Combinatorial Methods and Their Application to Mapping Wetting–Dewetting Transition Lines on Gradient Surface Energy Substrates. , 0, , 201-223.		0

178 Hydrogels. , 0, , 6079-6088.