Luke Boulter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202126/publications.pdf

Version: 2024-02-01

236925 345221 5,454 36 25 36 citations h-index g-index papers 41 41 41 7666 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>In Vivo</i> Modeling of Patient Genetic Heterogeneity Identifies New Ways to Target Cholangiocarcinoma. Cancer Research, 2022, 82, 1548-1559.	0.9	8
2	Joining the dots $\hat{a}\in$ NEDDylation in cancer cells regulates the tumour environment in cholangiocarcinoma. Journal of Hepatology, 2022, , .	3.7	0
3	The fibrotic and immune microenvironments as targetable drivers of metastasis. British Journal of Cancer, 2021, 124, 27-36.	6.4	47
4	TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. Journal of Hepatology, 2021, 74, 860-872.	3.7	40
5	Developing models of cholangiocarcinoma to close the translational gap in cancer research. Expert Opinion on Investigational Drugs, 2021, 30, 439-450.	4.1	3
6	Inhibition of nuclear factor (erythroid-derived 2)-like 2 promotes hepatic progenitor cell activation and differentiation. Npj Regenerative Medicine, 2021, 6, 28.	5.2	14
7	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	11.1	133
8	Notch-IGF1 signaling during liver regeneration drives biliary epithelial cell expansion and inhibits hepatocyte differentiation. Science Signaling, 2021, 14, .	3.6	17
9	Build to understand biliary oncogenesis via organoids and FGFR2 fusion proteins. Journal of Hepatology, 2021, 75, 262-264.	3.7	1
10	The developmental origins of Notch-driven intrahepatic bile duct disorders. DMM Disease Models and Mechanisms, $2021,14,.$	2.4	3
11	Modulation of Biliary Cancer Chemoâ€Resistance Through MicroRNAâ€Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology, 2020, 72, 982-996.	7.3	30
12	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	17.8	1,155
13	Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors. Nature Communications, 2020, 11, 445.	12.8	31
14	Targeting the Wnt signaling pathway: the challenge of reducing scarring without affecting repair. Expert Opinion on Investigational Drugs, 2020, 29, 179-190.	4.1	9
15	Embryonic mesothelial-derived hepatic lineage of quiescent and heterogenous scar-orchestrating cells defined but suppressed by WT1. Nature Communications, 2019, 10, 4688.	12.8	19
16	The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 2019, 5, eaaw0254.	10.3	93
17	Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nature Communications, 2018, 9, 1020.	12.8	105
18	The STAT3–IL-10–IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury. Journal of Immunology, 2018, 200, 1169-1187.	0.8	74

#	Article	IF	CITATIONS
19	A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Developmental Cell, 2018, 47, 509-523.e5.	7.0	66
20	${\sf TGF}\hat{\sf I}^2$ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	12.4	161
21	Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut, 2017, 66, 1268-1277.	12.1	75
22	Understanding liver regeneration to bring new insights to the mechanisms driving cholangiocarcinoma. Npj Regenerative Medicine, $2017, 2, 13$.	5.2	10
23	Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature, 2017, 547, 350-354.	27.8	405
24	The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size. Nature Cell Biology, 2016, 18, 467-479.	10.3	253
25	Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12250-12255.	7.1	68
26	Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nature Communications, 2016, 7, 10354.	12.8	56
27	Next generation of ALDH substrates and their potential to study maturational lineage biology in stem and progenitor cells. American Journal of Physiology - Renal Physiology, 2015, 308, G573-G578.	3.4	17
28	Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nature Cell Biology, 2015, 17, 971-983.	10.3	374
29	Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut, 2015, 64, 312-321.	12.1	48
30	WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. Journal of Clinical Investigation, 2015, 125, 1269-1285.	8.2	215
31	Cell Lineage Tracing Reveals a Biliary Origin of Intrahepatic Cholangiocarcinoma. Cancer Research, 2014, 74, 1005-1010.	0.9	106
32	Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6542-6547.	7.1	140
33	Differentiation of progenitors in the liver: a matter of local choice. Journal of Clinical Investigation, 2013, 123, 1867-1873.	8.2	100
34	Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3186-95.	7.1	793
35	Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Medicine, 2012, 18, 572-579.	30.7	624
36	Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut, 2010, 59, 645-654.	12.1	151