
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202075/publications.pdf Version: 2024-02-01

YANUE HE

#	Article	IF	CITATIONS
1	Dual enhancement of carrier generation and migration on Au/g-C ₃ N ₄ photocatalysts for highly-efficient broadband PET-RAFT polymerization. Polymer Chemistry, 2022, 13, 1022-1030.	3.9	9
2	In situ monitoring of photo-PISA via aggregation-induced emission (AIE) technology. Journal of Polymer Research, 2022, 29, 1.	2.4	1
3	Simple Full-Spectrum Heterogeneous Photocatalyst for Photo-induced Atom Transfer Radical Polymerization (ATRP) under UV/vis/NIR and its Application for the Preparation of Dual Mode Curing Injectable Photoluminescence Hydrogel. ACS Applied Materials & Interfaces, 2022, 14, 21555-21563.	8.0	15
4	Continuous Preparation of Homogeneous Crosslinked PDMS Microgel Particles through Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Applied Polymer Materials, 2022, 4, 4347-4354.	4.4	2
5	Mechanically induced atom transfer radical polymerization with high efficiency via piezoelectric heterostructures. Polymer, 2022, 252, 124949.	3.8	6
6	Dimensional Optimization for ZnO-Based Mechano-ATRP with Extraordinary Activity. Journal of Physical Chemistry Letters, 2022, 13, 4884-4890.	4.6	15
7	Advancing Performance and Unfolding Mechanism of Lithium and Sodium Storage in SnO ₂ via Precision Synthesis of Monodisperse PEGâ€Ligated Nanoparticles. Advanced Energy Materials, 2022, 12, .	19.5	34
8	Ultrafast Visible-Light-Induced ATRP in Aqueous Media with Carbon Quantum Dots as the Catalyst and Its Application for 3D Printing. Journal of the American Chemical Society, 2022, 144, 9817-9826.	13.7	41
9	From 0-dimension to 1-dimensions: Au nanocrystals as versatile plasmonic photocatalyst for broadband light induced RAFT polymerization. Polymer Chemistry, 2021, 12, 2439-2446.	3.9	4
10	Effect of nitrogen type on carbon dot photocatalysts for visible-light-induced atom transfer radical polymerization. Polymer Chemistry, 2021, 12, 3060-3066.	3.9	17
11	Dualâ€Protected Metal Halide Perovskite Nanosheets with an Enhanced Set of Stabilities. Angewandte Chemie - International Edition, 2021, 60, 7259-7266.	13.8	45
12	Dualâ€Protected Metal Halide Perovskite Nanosheets with an Enhanced Set of Stabilities. Angewandte Chemie, 2021, 133, 7335-7342.	2.0	10
13	Unconventional Approach to Fabricating a TiO ₂ Nanoring with Precise Dimension Control Based on Starlike Polymeric Nanoreactors. Journal of Physical Chemistry Letters, 2021, 12, 3456-3463.	4.6	5
14	Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Progress in Polymer Science, 2021, 116, 101387.	24.7	138
15	Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2005888.	21.0	108
16	Polymer-Ligated Uniform Lead Chalcogenide Nanoparticles with Tunable Size and Robust Stability Enabled by Judiciously Designed Surface Chemistry. Chemistry of Materials, 2021, 33, 6701-6712.	6.7	6
17	Confined Unimolecular Micelles for Precisely Controlled In Situ Synthesis of Stable Ultrasmall Metal Nanocluster Assemblies. Chemistry of Materials, 2021, 33, 5067-5075.	6.7	20
18	Tailoring electrocatalytic activity of in situ crafted perovskite oxide nanocrystals via size and dopant control. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22

#	Article	IF	CITATIONS
19	General Route to Colloidal Nanocrystal Clusters with Precise Hierarchical Control via Star-like Nanoreactors. Langmuir, 2021, 37, 10461-10468.	3.5	4
20	Preparation of highly colloidal stable Yolk-Shell nanocomposite and its multi-stimuli responsive based on surface aggregation-induced emission (S-AIE). Journal of Colloid and Interface Science, 2021, 600, 421-429.	9.4	4
21	Simple and robust nitroxide-mediated polymerization with oxygen tolerance. Polymer Chemistry, 2021, 12, 7010-7015.	3.9	8
22	SnO ₂ as Advanced Anode of Alkaliâ€ion Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility. Advanced Energy Materials, 2020, 10, 1902657.	19.5	71
23	Synthesis of Amphiphilic and Double Hydrophilic Star-like Block Copolymers and the Dual pH-Responsiveness of Unimolecular Micelle. Macromolecules, 2020, 53, 8286-8295.	4.8	15
24	Alkaliâ€lon Batteries: SnO ₂ as Advanced Anode of Alkaliâ€lon Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility (Adv. Energy Mater. 6/2020). Advanced Energy Materials, 2020, 10, 2070027.	19.5	2
25	A Robust Route to Co ₂ (OH) ₂ CO ₃ Ultrathin Nanosheets with Superior Lithium Storage Capability Templated by Aspartic Acidâ€Functionalized Graphene Oxide. Advanced Energy Materials, 2019, 9, 1901093.	19.5	94
26	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	21.0	119
27	Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Science Advances, 2019, 5, eaax4424.	10.3	116
28	Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1391-E1400.	7.1	106
29	Magnetoelectric Effect in Single-Phase Multiferroic Materials. , 2018, , 49-75.		1
30	All-Inorganic Perovskite Nanocrystals with a Stellar Set of Stabilities and Their Use in White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 37267-37276.	8.0	82
31	Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 1895-1898.	2.0	26
32	Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 1869-1872.	13.8	260
33	Rücktitelbild: Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€Ion Batteries (Angew. Chem. 7/2017). Angewandte Chemie, 2017, 129, 1958-1958.	2.0	2
34	Highly Branched Metal Alloy Networks with Superior Activities for the Methanol Oxidation Reaction. Angewandte Chemie - International Edition, 2017, 56, 4488-4493.	13.8	210
35	Highly Branched Metal Alloy Networks with Superior Activities for the Methanol Oxidation Reaction. Angewandte Chemie, 2017, 129, 4559-4564.	2.0	40
36	Interconnected Ni(HCO ₃) ₂ Hollow Spheres Enabled by Self-Sacrificial Templating with Enhanced Lithium Storage Properties. ACS Energy Letters, 2017, 2, 111-116.	17.4	108

#	Article	IF	CITATIONS
37	Innenrücktitelbild: Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption (Angew. Chem.) Tj ETG	Qq12100.78	43 b 4 rgBT /
38	Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 12956-12967.	13.7	107
39	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie, 2017, 129, 13126-13131.	2.0	8
40	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2017, 56, 12946-12951.	13.8	34
41	Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8, 16045.	12.8	359
42	Innenrücktitelbild: Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells (Angew. Chem. 13/2016). Angewandte Chemie, 2016, 128, 4441-4441.	2.0	3
43	1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science, 2016, 353, 1268-1272.	12.6	316
44	Precisely Sizeâ€Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Starâ€Like Block Copolymers. Small, 2016, 12, 6714-6723.	10.0	68
45	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie, 2016, 128, 4352-4356.	2.0	71
46	Monodisperse Dualâ€Functional Upconversion Nanoparticles Enabled Nearâ€Infrared Organolead Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 4280-4284.	13.8	257
47	<i>In-Situ</i> Crafting of ZnFe ₂ O ₄ Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials. ACS Nano, 2016, 10, 2728-2735.	14.6	192
48	Nonepitaxial growth of uniform and precisely size-tunable core/shell nanoparticles and their enhanced plasmon-driven photocatalysis. Journal of Materials Chemistry A, 2016, 4, 7190-7199.	10.3	85
49	Innenrücktitelbild: An Unconventional Route to Monodisperse and Intimately Contacted Semiconducting Organic-Inorganic Nanocomposites (Angew. Chem. 15/2015). Angewandte Chemie, 2015, 127, 4761-4761.	2.0	0
50	Precisely Sizeâ€Tunable Magnetic/Plasmonic Core/Shell Nanoparticles with Controlled Optical Properties. Angewandte Chemie - International Edition, 2015, 54, 12091-12096.	13.8	69
51	A versatile strategy for uniform hybrid nanoparticles and nanocapsules. Polymer Chemistry, 2015, 6, 5190-5197.	3.9	43
52	An Unconventional Route to Monodisperse and Intimately Contacted Semiconducting Organic–Inorganic Nanocomposites. Angewandte Chemie - International Edition, 2015, 54, 4636-4640.	13.8	54
53	Unconventional Route to Hairy Plasmonic/Semiconductor Core/Shell Nanoparticles with Precisely Controlled Dimensions and Their Use in Solar Energy Conversion. Chemistry of Materials, 2015, 27, 5271-5278.	6.7	76
54	Continuous crafting of uniform colloidal nanocrystals using an inert-gas-driven microflow reactor. Nanoscale, 2015, 7, 9731-9737.	5.6	10

#	Article	IF	CITATIONS
55	Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. Journal of Materials Chemistry A, 2015, 3, 13340-13349.	10.3	71
56	A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish. Science Advances, 2015, 1, e1500025.	10.3	69
57	Robust Route to Unimolecular Core–Shell and Hollow Polymer Nanoparticles. Chemistry of Materials, 2014, 26, 6058-6067.	6.7	42
58	Block copolymer/ferroelectric nanoparticle nanocomposites. Nanoscale, 2013, 5, 8695.	5.6	54
59	Separating Effect of a Novel Combined Magnetic Field on Inclusions in Molten Aluminum Alloy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1149-1155.	2.1	10
60	Effect of Electromagnetic Vibration on the Agglomeration Behavior of Primary Silicon in Hypereutectic Al-Si Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1400-1404.	2.2	4
61	Effect of combined magnetic field on the eliminating inclusions from liquid aluminum alloy. Materials Letters, 2011, 65, 1226-1228.	2.6	26