
Marta ValÃ;Å;kovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/620139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial for Special Issue "Clay Minerals and Waste Fly Ash Ceramics― Minerals (Basel, Switzerland), 2022, 12, 73.	2.0	Ο
2	α-Fe2O3 Nanoparticles/Iron-Containing Vermiculite Composites: Structural, Textural, Optical and Photocatalytic Properties. Minerals (Basel, Switzerland), 2022, 12, 607.	2.0	3
3	α-Fe2O3 nanoparticles/vermiculite composites prepared for catalytic decomposition of polystyrene. Materials Today: Proceedings, 2021, 37, 1-4.	1.8	1
4	Effect of Talc in Mixtures with Fly Ash on Sintering Crystalline Phases and Porosity of Mullite-Cordierite Ceramics. Minerals (Basel, Switzerland), 2021, 11, 154.	2.0	5
5	Photocatalytic water splitting over CeO2/Fe2O3/Ver photocatalysts. Energy Conversion and Management, 2021, 238, 114156.	9.2	18
6	Effects of Kaolin Additives in Fly Ash on Sintering and Properties of Mullite Ceramics. Minerals (Basel,) Tj ETQq0 (0 0 rgBT /C)verlock 10 Tf
7	Magnesium Effect in K/Co-Mg-Mn-Al Mixed Oxide Catalyst for Direct NO Decomposition. Catalysts, 2020, 10, 931.	3.5	9
8	Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic. Minerals (Basel, Switzerland), 2020, 10, 1122.	2.0	7
9	Vermiculites from Brazil and Palabora: Structural changes upon heat treatment and influence on the depolymerization of polystyrene. Applied Clay Science, 2020, 192, 105639.	5.2	6
10	α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties. Materials, 2019, 12, 1880.	2.9	48
11	Cordierite/CeO2 ceramic nanocomposites from vermiculite with fixed CeO2 nanoparticles, talc and kaolin. Applied Clay Science, 2019, 179, 105150.	5.2	6
12	Photocatalytic Decomposition of N ₂ O Over Ceramics Cordierite/CeO ₂ Nanoparticles. Journal of Nanoscience and Nanotechnology, 2019, 19, 7339-7344.	0.9	4
13	Crystallization and Quantification of Crystalline and Non-Crystalline Phases in Kaolin-Based Cordierites. Materials, 2019, 12, 3104.	2.9	16
14	Polyethylene/Organo—Inorgano Vermiculites and Their Antimicrobial Properties. Journal of Nanoscience and Nanotechnology, 2019, 19, 2599-2605.	0.9	0
15	Comparable study of vermiculites from four commercial deposits prepared with fixed ceria nanoparticles. Applied Clay Science, 2018, 151, 164-174.	5.2	16
16	Structural and electrical properties of ceria nanoparticles on aluminosilicate matrices. Materials Today: Proceedings, 2018, 5, S96-S102.	1.8	2
17	Cordierite/steatite ceramics sintered from talc, kaolin and vermiculites: comparison of natural and organovermiculites effect. Materials Today: Proceedings, 2018, 5, S88-S95.	1.8	1
18	Graphite an exfoliated and organomodified filler for polymeric nanocomposites. Materials Today: Proceedings, 2018, 5, S103-S108.	1.8	0

Marta ValÃiÅikovÃi

#	Article	IF	CITATIONS
19	Infrared and Raman spectroscopy of three commercial vermiculites doped with cerium dioxide nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 39-45.	3.9	8
20	Influence of acidâ€treated talc and Na ₂ <scp>CO</scp> ₃ flux on mineralogical phase composition and porosity in steatite ceramics. International Journal of Applied Ceramic Technology, 2017, 14, 803-809.	2.1	6
21	Preparation of antibacterial chlorhexidine/vermiculite and release study. International Journal of Mineral Processing, 2017, 159, 1-6.	2.6	14
22	Structural Properties and Photocatalytic Activity of Ceria Nanoparticles on Vermiculite Matrix. Journal of Nanoscience and Nanotechnology, 2016, 16, 7844-7848.	0.9	11
23	Uptake of Ce(III) and Ce(IV) on montmorillonite. Applied Clay Science, 2016, 132-133, 41-49.	5.2	16
24	Antibacterial Polypropylene/Ag-Kaolinite, Preparation and Characterization. Advanced Science Letters, 2016, 22, 656-660.	0.2	1
25	STRUCTURAL CHARACTERISTICS OF CORDIERITES BASED ON COMMERCIAL VERMICULITES IN RELATION TO THE NATURAL AND SYNTHETIC CORDIERITES. Ceramics - Silikaty, 2016, , 308-316.	0.3	4
26	Cordierite/steatite/CeO2 porous materials – Preparation, structural characterization and their photocatalytic activity. Microporous and Mesoporous Materials, 2015, 207, 120-125.	4.4	15
27	Structure and antibacterial properties of polyethylene/organo-vermiculite composites. Solid State Sciences, 2015, 48, 197-204.	3.2	23
28	Characterization of two low charge vermiculites after hydrochloric acid treatment. Acta Geodynamica Et Geomaterialia, 2015, , 299-306.	0.5	4
29	Antimicrobial Nanocomposites Based on Natural Modified Materials: A Review of Carbons and Clays. Journal of Nanoscience and Nanotechnology, 2014, 14, 673-693.	0.9	40
30	Cobalt-Organovermiculite Arrangement and Mechanical Properties: Models and Experiments. Journal of Computational and Theoretical Nanoscience, 2014, 11, 2387-2392.	0.4	0
31	Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling. Applied Surface Science, 2014, 305, 783-791.	6.1	33
32	Structural characteristics of cordierite/steatite ceramics sintered from mixtures containing pore-forming organovermiculite. Ceramics International, 2014, 40, 15717-15725.	4.8	12
33	Vibrational spectroscopy of acid treated vermiculites. Vibrational Spectroscopy, 2014, 70, 63-69.	2.2	40
34	Antibacterial efficiency of vermiculite/chlorhexidine nanocomposites and results of the in vivo test of harmlessness of vermiculite. Materials Science and Engineering C, 2014, 42, 466-473.	7.3	21
35	Structural variability of high purity cordierite/steatite ceramics sintered from mixtures with various vermiculites. Ceramics International, 2014, 40, 8489-8498.	4.8	25
36	<i>A Special Section on</i> Nanomaterials: Preparation and Characterization. Advanced Science, Engineering and Medicine, 2014, 6, 437-438.	0.3	0

Marta ValÃiÅikovÃi

#	Article	IF	CITATIONS
37	Antibacterial activity of organomontmorillonites and organovermiculites prepared using chlorhexidine diacetate. Applied Clay Science, 2013, 83-84, 17-23.	5.2	25
38	New aspects on vermiculite filler in polyethylene. Applied Clay Science, 2013, 72, 110-116.	5.2	17
39	Characterization of vermiculite particles after different milling techniques. Powder Technology, 2013, 239, 277-283.	4.2	29
40	Role of vermiculite and zirconium–vermiculite on the formation of zircon–cordierite nanocomposites. Applied Clay Science, 2013, 75-76, 100-108.	5.2	21
41	Silver and-or copper vermiculites and their antibacterial effect. Acta Geodynamica Et Geomaterialia, 2013, , 97-104.	0.5	12
42	Vermiculite's Effect Study on the Friction Performance of Composites: Extension Evaluation and Interactions Modeling. Advanced Science Focus, 2013, 1, 103-110.	0.1	0
43	Cordierite composites reinforced with zircon arising from zirconium–vermiculite precursor. Materials Letters, 2012, 80, 158-161.	2.6	16
44	Effects of brief milling and acid treatment on two ordered and disordered kaolinite structures. Applied Clay Science, 2011, 54, 70-76.	5.2	56
45	Selected Peer-Reviewed Articles from 2nd International Nanomaterials and Nanotechnology Meeting (NanoOstrava 2011). Advanced Science, Engineering and Medicine, 2011, 3, 1-2.	0.3	Ο
46	Characterization of Vermiculite Structure Using X-Ray Powder Diffraction Before Its Use Into Nanocomposites. Advanced Science, Engineering and Medicine, 2011, 3, 119-121.	0.3	0
47	Adhesion of silver nanoparticles on the clay substrates; modeling and experiment. Applied Surface Science, 2010, 256, 2841-2848.	6.1	21
48	Preparation of novel organovermiculites with antibacterial activity using chlorhexidine diacetate. Journal of Colloid and Interface Science, 2010, 342, 593-597.	9.4	25
49	Vermiculite interlayer as a reactor for CdS ultrafine particles preparation. Microporous and Mesoporous Materials, 2010, 129, 118-125.	4.4	9
50	Preparation and characterization of antibacterial silver/vermiculites and silver/montmorillonites. Geochimica Et Cosmochimica Acta, 2010, 74, 6287-6300.	3.9	35
51	Microporous Cordierite Ceramics Prepared from Clay Mineral Mixtures Containing Vermiculite. Journal of Scientific Conference Proceedings, 2010, 2, 49-52.	0.1	5
52	Vermiculite Filler for Polymeric Nanocomposites: Thermal and Dispersion Study. Journal of Scientific Conference Proceedings, 2010, 2, 42-44.	0.1	0
53	Molecular modeling of surface modification of Wyoming and Cheto montmorillonite by methylene blue. Journal of Molecular Modeling, 2009, 15, 1391-1396.	1.8	5
54	Preparation and characterization of porous cordierite for potential use in cellular ceramics. Chemical Papers, 2009, 63, .	2.2	12

Marta ValÃiÅikovÃi

#	Article	IF	CITATIONS
55	Organovermiculite nanofillers in polypropylene. Applied Clay Science, 2009, 43, 108-112.	5.2	18
56	Influence of vermiculite on the formation of porous cordierites. Applied Clay Science, 2009, 46, 196-201.	5.2	36
57	Effects of ZrSiO4 in non-metallic brake friction materials on friction performance. Tribology International, 2008, 41, 166-174.	5.9	60
58	Silver Nanoparticles/Montmorillonite Composites Prepared Using Nitrating Reagent at Water and Glycerol. Journal of Nanoscience and Nanotechnology, 2008, 8, 3050-3058.	0.9	16
59	Study of silver adsorption on montmorillonite. Journal of the Brazilian Chemical Society, 2008, 19, 549-556.	0.6	29
60	Rehydration of Calcined Mg-Al Hydrotalcite in Acidified Chloride-Containing Aqueous Solution. Collection of Czechoslovak Chemical Communications, 2007, 72, 1284-1294.	1.0	6
61	Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite–urea intercalates. Applied Clay Science, 2007, 35, 108-118.	5.2	111
62	Effect of Mn/Al ratio in Co–Mn–Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O. Catalysis Today, 2007, 119, 233-238.	4.4	73
63	Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue. Journal of Colloid and Interface Science, 2007, 311, 14-23.	9.4	52
64	Structural ordering of organovermiculite: Experiments and modeling. Journal of Colloid and Interface Science, 2007, 313, 281-287.	9.4	28
65	Organo-vermiculite structure ordering after PVAc introduction. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1870-1875.	1.8	3
66	Identification of carbon forms and other phases in automotive brake composites using multiple analytical techniques. Carbon, 2006, 44, 792-798.	10.3	11
67	Structure–activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors. Journal of Molecular Catalysis A, 2006, 248, 210-219.	4.8	52
68	Structure of montmorillonite cointercalated with stearic acid and octadecylamine: Modeling, diffraction, IR spectroscopy. Journal of Colloid and Interface Science, 2006, 300, 264-269.	9.4	42
69	Preparation of Vermiculite Nanoparticles Using Thermal Hydrogen Peroxide Treatment. Journal of Nanoscience and Nanotechnology, 2006, 6, 726-730.	0.9	16
70	Preparation of Mg-Vermiculite Nanoparticles Using Potassium Persulfate Treatment. Journal of Nanoscience and Nanotechnology, 2006, 6, 2484-2488.	0.9	7
71	Influence of chain length on intercalation process of polyvinylchloride/clay nanocomposites based on alkyl-amine. Plastics, Rubber and Composites, 2004, 33, 279-286.	2.0	9
72	Structure analysis of intercalated layer silicates: combination of molecular simulations and experiment. Journal of Colloid and Interface Science, 2004, 277, 154-161.	9.4	44

#	Article	IF	CITATIONS
73	Intercalation and Grafting of Vermiculite with Octadecylamine Using Low-temperature Melting. Clays and Clay Minerals, 2003, 51, 555-565.	1.3	12