List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/620102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways <i>inÂvivo</i> . FEBS Journal, 2022, 289, 3894-3914.	4.7	2
2	The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biology, 2021, 11, 210002.	3.6	18
3	The Mia40/CHCHD4 Oxidative Folding System: Redox Regulation and Signaling in the Mitochondrial Intermembrane Space. Antioxidants, 2021, 10, 592.	5.1	16
4	Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 720656.	3.7	25
5	Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Advances, 2021, 11, 32476-32493.	3.6	7
6	Targeting and Insertion of Membrane Proteins in Mitochondria. Frontiers in Cell and Developmental Biology, 2021, 9, 803205.	3.7	16
7	AIF meets the CHCHD4/Mia40-dependent mitochondrial import pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165746.	3.8	37
8	The biogenesis of mitochondrial intermembrane space proteins. Biological Chemistry, 2020, 401, 737-747.	2.5	28
9	The Yeast Voltage-Dependent Anion Channel Porin: More IMPORTant than Just Metabolite Transport. Molecular Cell, 2019, 73, 861-862.	9.7	3
10	MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biology, 2019, 16, 918-929.	3.1	42
11	Iron–sulfur clusters: from metals through mitochondria biogenesis to disease. Journal of Biological Inorganic Chemistry, 2018, 23, 509-520.	2.6	55
12	Shaping the import system of mitochondria. ELife, 2018, 7, .	6.0	1
13	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	9.0	242
14	Unconventional Targeting of a Thiol Peroxidase to the Mitochondrial Intermembrane Space Facilitates Oxidative Protein Folding. Cell Reports, 2017, 18, 2729-2741.	6.4	30
15	Cytosolic redox components regulate protein homeostasis via additional localisation in the mitochondrial intermembrane space. FEBS Letters, 2017, 591, 2661-2670.	2.8	13
16	Protein trafficking in the mitochondrial intermembrane space: mechanisms and links to human disease. Biochemical Journal, 2017, 474, 2533-2545.	3.7	12
17	Oxidative protein biogenesis and redox regulation in the mitochondrial intermembrane space. Cell and Tissue Research, 2017, 367, 43-57.	2.9	14
18	Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1298-1306.	4.1	26

#	Article	IF	CITATIONS
19	Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2613-2623.	4.1	12
20	Import of a major mitochondrial enzyme depends on synergy between two distinct helices of its presequence. Biochemical Journal, 2016, 473, 2813-2829.	3.7	14
21	Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends in Biochemical Sciences, 2016, 41, 245-260.	7.5	104
22	Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Molecular Cell, 2015, 58, 1001-1014.	9.7	164
23	The MIA Pathway: A Key Regulator of Mitochondrial Oxidative Protein Folding and Biogenesis. Accounts of Chemical Research, 2015, 48, 2191-2199.	15.6	44
24	Common Players in Mitochondria Biogenesis and Neuronal Protection Against Stress-Induced Apoptosis. Neurochemical Research, 2014, 39, 546-555.	3.3	8
25	An Intrinsically Disordered Domain Has a Dual Function Coupled to Compartment-Dependent Redox Control. Journal of Molecular Biology, 2013, 425, 594-608.	4.2	16
26	Introduction:Focus on mitochondria. FEBS Journal, 2013, 280, 4932-4932.	4.7	0
27	Biogenesis of yeast <scp>M</scp> ia40–Âuncoupling folding from import and atypical recognition features. FEBS Journal, 2013, 280, 4960-4969.	4.7	18
28	The Mitochondrial Intermembrane Space: A Hub for Oxidative Folding Linked to Protein Biogenesis. Antioxidants and Redox Signaling, 2013, 19, 54-62.	5.4	24
29	An Electron-Transfer Path through an Extended Disulfide Relay System: The Case of the Redox Protein ALR. Journal of the American Chemical Society, 2012, 134, 1442-1445.	13.7	40
30	Targeting and Maturation of Erv1/ALR in the Mitochondrial Intermembrane Space. ACS Chemical Biology, 2012, 7, 707-714.	3.4	25
31	Anamorsin Is a [2Fe-2S] Cluster-Containing Substrate of the Mia40-Dependent Mitochondrial Protein Trapping Machinery. Chemistry and Biology, 2011, 18, 794-804.	6.0	65
32	Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4811-4816.	7.1	92
33	Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20190-20195.	7.1	116
34	The N-terminal Shuttle Domain of Erv1 Determines the Affinity for Mia40 and Mediates Electron Transfer to the Catalytic Erv1 Core in Yeast Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 1327-1339.	5.4	30
35	Oxidative Protein Folding in the Mitochondrial Intermembrane Space. Antioxidants and Redox Signaling, 2010, 13, 1189-1204.	5.4	77
36	Trapping Oxidative Folding Intermediates During Translocation to the Intermembrane Space of Mitochondria: In Vivo and In Vitro Studies. Methods in Molecular Biology, 2010, 619, 411-423.	0.9	7

#	Article	IF	CITATIONS
37	A novel intermembrane space–targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. Journal of Cell Biology, 2009, 187, 1007-1022.	5.2	144
38	The coiled coilâ€helixâ€coiled coilâ€helix proteins may be redox proteins. FEBS Letters, 2009, 583, 1699-1702.	2.8	25
39	Mitochondrial ATPâ€independent chaperones. IUBMB Life, 2009, 61, 909-914.	3.4	12
40	MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nature Structural and Molecular Biology, 2009, 16, 198-206.	8.2	230
41	Complementing structural information of modular proteins with small angle neutron scattering and contrast variation. European Biophysics Journal, 2008, 37, 603-611.	2.2	9
42	ICPBCZin: A red emitting ratiometric fluorescent indicator with nanomolar affinity for Zn2+ ions. Cell Calcium, 2008, 44, 270-275.	2.4	20
43	The Essential Function of Tim12 in Vivo Is Ensured by the Assembly Interactions of Its C-terminal Domain. Journal of Biological Chemistry, 2008, 283, 15747-15753.	3.4	32
44	Conserved substrate binding by chaperones in the bacterial periplasm and the mitochondrial intermembrane space. Biochemical Journal, 2008, 409, 377-387.	3.7	31
45	Conserved Motifs Reveal Details of Ancestry and Structure in the Small TIM Chaperones of the Mitochondrial Intermembrane Space. Molecular Biology and Evolution, 2007, 24, 1149-1160.	8.9	86
46	Molecular Interactions of the Mitochondrial Tim12 Translocase Subunit. Protein and Peptide Letters, 2007, 14, 597-600.	0.9	10
47	Mutation of Conserved Charged Residues in Mitochondrial TIM10 Subunits Precludes TIM10 Complex Assembly, but Does not Abolish Growth of Yeast Cells. Journal of Molecular Biology, 2007, 371, 1315-1324.	4.2	17
48	Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space. Molecular Microbiology, 2007, 65, 1360-1373.	2.5	77
49	Translocation of mitochondrial inner-membrane proteins: conformation matters. Trends in Biochemical Sciences, 2006, 31, 259-267.	7.5	37
50	A cryptic matrix targeting signal of the yeast ADP/ATP carrier normally inserted by the TIM22 complex is recognized by the TIM23 machinery. Biochemical Journal, 2005, 385, 173-180.	3.7	13
51	Distinct Domains of Small Tims Involved in Subunit Interaction and Substrate Recognition. Journal of Molecular Biology, 2005, 351, 839-849.	4.2	40
52	Erv1 Mediates the Mia40-dependent Protein Import Pathway and Provides a Functional Link to the Respiratory Chain by Shuttling Electrons to Cytochrome c. Journal of Molecular Biology, 2005, 353, 937-944.	4.2	205
53	A Disulfide Relay System in Mitochondria. Cell, 2005, 121, 965-967.	28.9	56
54	The Structural Basis of the TIM10 Chaperone Assembly. Journal of Biological Chemistry, 2004, 279, 18959-18966.	3.4	54

#	Article	IF	CITATIONS
55	Functional TIM10 Chaperone Assembly Is Redox-regulated in Vivo. Journal of Biological Chemistry, 2004, 279, 18952-18958.	3.4	106
56	The Dynamic Dimerization of the Yeast ADP/ATP Carrier in the Inner Mitochondrial Membrane Is Affected by Conserved Cysteine Residues. Journal of Biological Chemistry, 2003, 278, 26757-26764.	3.4	40
57	Juxtaposition of the Two Distal CX3C Motifs via Intrachain Disulfide Bonding Is Essential for the Folding of Tim10. Journal of Biological Chemistry, 2003, 278, 38505-38513.	3.4	76
58	Assembly of Tim9 and Tim10 into a Functional Chaperone. Journal of Biological Chemistry, 2002, 277, 36100-36108.	3.4	65
59	Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Research, 2002, 30, 5074-5086.	14.5	81
60	Directing proteins to mitochondria by fusion to mitochondrial targeting signals. Methods in Enzymology, 2000, 327, 305-317.	1.0	6
61	Biogenesis of Mitochondrial Inner Membrane Proteins. Journal of Biological Chemistry, 1999, 274, 35285-35288.	3.4	43
62	The mitochondrial processing peptidase behaves as a zinc-metallopeptidase. Journal of Molecular Biology, 1998, 280, 193-199.	4.2	37
63	Import of Mitochondrial Carriers Mediated by Essential Proteins of the Intermembrane Space. Science, 1998, 279, 369-373.	12.6	289
64	Translocation arrest of an intramitochondrial sorting signal next to Tim11 at the inner-membrane import site. Nature, 1996, 384, 585-588.	27.8	60
65	Involvement of separate domains of the cellulosomal protein S1 ofClostridium thermocellumin binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Letters, 1992, 304, 89-92.	2.8	71
66	High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Letters, 1991, 282, 205-208.	2.8	102
67	Interaction of the duplicated segment carried byClostridium thermocellumcellulases with cellulosome components. FEBS Letters, 1991, 291, 185-188.	2.8	152