Misty L Kuhn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6200764/publications.pdf Version: 2024-02-01

MISTY | KIIHN

#	Article	IF	CITATIONS
1	Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation. PLoS ONE, 2014, 9, e94816.	2.5	249
2	Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter. Journal of Bacteriology, 2013, 195, 4174-4186.	2.2	99
3	Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. MBio, 2019, 10, .	4.1	94
4	The <i>E. coli</i> sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. MicrobiologyOpen, 2015, 4, 66-83.	3.0	87
5	Characterizing metal-binding sites in proteins with X-ray crystallography. Nature Protocols, 2018, 13, 1062-1090.	12.0	86
6	Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. MBio, 2018, 9, .	4.1	86
7	Double trouble—Buffer selection and <scp>H</scp> isâ€ŧag presence may be responsible for nonreproducibility of biomedical experiments. Protein Science, 2014, 23, 1359-1368.	7.6	83
8	Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic. Plant Physiology, 2008, 148, 65-76.	4.8	79
9	Broadâ€substrate screen as a tool to identify substrates for bacterial Gcn5â€related <i>N</i> â€acetyltransferases with unknown substrate specificity. Protein Science, 2013, 22, 222-230.	7.6	45
10	Structural, Functional, and Inhibition Studies of a Gcn5-related N-Acetyltransferase (GNAT) Superfamily Protein PA4794. Journal of Biological Chemistry, 2013, 288, 30223-30235.	3.4	37
11	Structure of the Essential <i>Mtb</i> FadD32 Enzyme: A Promising Drug Target for Treating Tuberculosis. ACS Infectious Diseases, 2016, 2, 579-591.	3.8	37
12	Targeting DXP synthase in human pathogens: enzyme inhibition and antimicrobial activity of butylacetylphosphonate. Journal of Antibiotics, 2014, 67, 77-83.	2.0	34
13	<i>Bacillus anthracis</i> Inosine 5′-Monophosphate Dehydrogenase in Action: The First Bacterial Series of Structures of Phosphate Ion-, Substrate-, and Product-Bound Complexes. Biochemistry, 2012, 51, 6148-6163.	2.5	31
14	Ostreococcus tauri ADP-glucose Pyrophosphorylase Reveals Alternative Paths for the Evolution of Subunit Roles. Journal of Biological Chemistry, 2009, 284, 34092-34102.	3.4	30
15	Large Scale Structural Rearrangement of a Serine Hydrolase from Francisella tularensis Facilitates Catalysis. Journal of Biological Chemistry, 2013, 288, 10522-10535.	3.4	28
16	The unique nucleotide specificity of the sucrose synthase from <i>Thermosynechococcus elongatus</i> . FEBS Letters, 2013, 587, 165-169.	2.8	24
17	A Novel Polyamine Allosteric Site of SpeG from Vibrio cholerae Is Revealed by Its Dodecameric Structure. Journal of Molecular Biology, 2015, 427, 1316-1334.	4.2	24
18	Acrylamide production using encapsulated nitrile hydratase from Pseudonocardia thermophila in a sol–gel matrix. Journal of Molecular Catalysis B: Enzymatic, 2014, 100, 19-24.	1.8	20

Misty L Kuhn

#	Article	IF	CITATIONS
19	The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochemical and Biophysical Research Communications, 2012, 424, 365-370.	2.1	19
20	Potential for Reduction of Streptogramin A Resistance Revealed by Structural Analysis of Acetyltransferase VatA. Antimicrobial Agents and Chemotherapy, 2014, 58, 7083-7092.	3.2	19
21	Structure and protective efficacy of the <i>Staphylococcus aureus</i> autocleaving protease EpiP. FASEB Journal, 2014, 28, 1780-1793.	0.5	17
22	Structural and Biochemical Characterization of <i>Acinetobacter</i> spp. Aminoglycoside Acetyltransferases Highlights Functional and Evolutionary Variation among Antibiotic Resistance Enzymes. ACS Infectious Diseases, 2017, 3, 132-143.	3.8	17
23	Identification of an Active Site-bound Nitrile Hydratase Intermediate through Single Turnover Stopped-flow Spectroscopy. Journal of Biological Chemistry, 2013, 288, 15532-15536.	3.4	16
24	Unraveling the Activation Mechanism of the Potato Tuber ADP-Glucose Pyrophosphorylase. PLoS ONE, 2013, 8, e66824.	2.5	16
25	Override of the Osteoclast Defect in Osteopontin-Deficient Mice by Metastatic Tumor Growth in the Bone. American Journal of Pathology, 2006, 168, 551-561.	3.8	14
26	Insight into the 3D structure and substrate specificity of previously uncharacterized GNAT superfamily acetyltransferases from pathogenic bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 55-64.	2.3	13
27	Insights into Glycogen Metabolism in Chemolithoautotrophic Bacteria from Distinctive Kinetic and Regulatory Properties of ADP-Glucose Pyrophosphorylase from Nitrosomonas europaea. Journal of Bacteriology, 2012, 194, 6056-6065.	2.2	12
28	Structural and functional characterization of three Type B and C chloramphenicol acetyltransferases from <i>Vibrio</i> species. Protein Science, 2020, 29, 695-710.	7.6	12
29	A Gcn5-RelatedN-Acetyltransferase (GNAT) Capable of Acetylating Polymyxin B and Colistin Antibioticsin Vitro. Biochemistry, 2018, 57, 7011-7020.	2.5	11
30	A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. Microbiology (United Kingdom), 2021, 167, .	1.8	9
31	Structure of the Bacillus anthracis dTDP- l -rhamnose biosynthetic pathway enzyme: dTDP-α- d -glucose 4,6-dehydratase, RfbB. Journal of Structural Biology, 2018, 202, 175-181.	2.8	8
32	Gcn5-Related N-Acetyltransferases (GNATs) With a Catalytic Serine Residue Can Play Ping-Pong Too. Frontiers in Molecular Biosciences, 2021, 8, 646046.	3.5	8
33	A Mouse Model of Breast Cancer Metastasis to the Choroid of the Eye. Clinical and Experimental Metastasis, 2005, 22, 685-690.	3.3	6
34	Biâ€national and interdisciplinary course in enzyme engineering. Biochemistry and Molecular Biology Education, 2010, 38, 370-379.	1.2	6
35	Structure of the <i>Bacillus anthracis</i> dTDP- <scp>L</scp> -rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose reductase (RfbD). Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 644-650.	0.8	6
36	Structure of the <i>Bacillus anthracis</i> dTDP- <scp>L</scp> -rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RfbC). Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 664-671.	0.8	6

MISTY L KUHN

#	Article	IF	CITATIONS
37	Generating enzyme and radicalâ€mediated bisubstrates as tools for investigating Gcn5â€related <i>Nâ€</i> acetyltransferases. FEBS Letters, 2017, 591, 2348-2361.	2.8	5
38	SpeG polyamine acetyltransferase enzyme from Bacillus thuringiensis forms a dodecameric structure and exhibits high catalytic efficiency. Journal of Structural Biology, 2020, 210, 107506.	2.8	5
39	Criticality of a conserved tyrosine residue in the <scp>SpeG</scp> protein from <scp><i>Escherichia coli</i></scp> . Protein Science, 2021, 30, 1264-1269.	7.6	5
40	The spermidine acetyltransferase SpeG regulates transcription of the small RNA rprA. PLoS ONE, 2018, 13, e0207563.	2.5	4
41	Structural characterization of a Type B chloramphenicol acetyltransferase from the emerging pathogen Elizabethkingia anophelis NUHP1. Scientific Reports, 2021, 11, 9453.	3.3	4
42	Structure of theBacillus anthracisdTDP-L-rhamnose-biosynthetic enzyme glucose-1-phosphate thymidylyltransferase (RfbA). Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 621-628.	0.8	2
43	The Vibrio cholerae SpeG Spermidine/Spermine N-Acetyltransferase Allosteric Loop and β6-β7 Structural Elements Are Critical for Kinetic Activity. Frontiers in Molecular Biosciences, 2021, 8, 645768.	3.5	1
44	Investigation of the Importance of Protein 3D Structure for Assessing Conservation of Lysine Acetylation Sites in Protein Homologs. Frontiers in Microbiology, 2021, 12, 805181.	3.5	1
45	Graduate student professional development and a CUREâ€style course and peerâ€reviewed student publications. FASEB Journal, 2018, 32, 535.28.	0.5	0
46	Assessing efficiency of the New England Biolabs Q5® siteâ€directed mutagenesis kit to produce a library of aminoglycoside N―acetyltransferase mutants. FASEB Journal, 2018, 32, 798.15.	0.5	0
47	Kinetic characterization of Staphylococcus aureus SpeG polyamine N―acetyltransferase. FASEB Journal, 2018, 32, 655.27.	0.5	0
48	Developing resources to support CURE projects investigating proteinâ€protein interactions, post translational modification and gene regulation for the MDH CURE Community (MCC). FASEB Journal, 2019, 33, 454.11.	0.5	0