Sabine Ehrt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6200437/publications.pdf

Version: 2024-02-01

38742 40979 11,347 98 50 93 citations h-index g-index papers 120 120 120 9429 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transcriptional Adaptation of <i>Mycobacterium tuberculosis</i> within Macrophages. Journal of Experimental Medicine, 2003, 198, 693-704.	8.5	1,311
2	The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, 2009, 7, 845-855.	28.6	1,179
3	Comprehensive Essentiality Analysis of the <i>Mycobacterium tuberculosis</i> Genome via Saturating Transposon Mutagenesis. MBio, 2017, 8, .	4.1	496
4	The Proteasome of Mycobacterium tuberculosis Is Required for Resistance to Nitric Oxide. Science, 2003, 302, 1963-1966.	12.6	489
5	Reprogramming of the Macrophage Transcriptome in Response to Interferon-Î ³ and Mycobacterium tuberculosis. Journal of Experimental Medicine, 2001, 194, 1123-1140.	8.5	437
6	Mycobacterial survival strategies in the phagosome: defence against host stresses. Cellular Microbiology, 2009, 11, 1170-1178.	2.1	377
7	Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Research, 2005, 33, e21-e21.	14.5	334
8	Metabolomics of Mycobacterium tuberculosis Reveals Compartmentalized Co-Catabolism of Carbon Substrates. Chemistry and Biology, 2010, 17, 1122-1131.	6.0	313
9	A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nature Medicine, 2008, 14, 849-854.	30.7	300
10	Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for <i>Mycobacterium tuberculosis</i> to establish and maintain infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9819-9824.	7.1	299
11	Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12200-12205.	7.1	283
12	In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nature Medicine, 2007, 13, 1515-1520.	30.7	227
13	Acid Resistance in <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2009, 191, 4714-4721.	2.2	209
14	Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15918-15923.	7.1	205
15	Selective Killing of Nonreplicating Mycobacteria. Cell Host and Microbe, 2008, 3, 137-145.	11.0	180
16	A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19095-19100.	7.1	167
17	Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nature Reviews Microbiology, 2018, 16, 496-507.	28.6	162
18	Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cellular Microbiology, 2001, 3, 247-254.	2.1	161

#	Article	IF	Citations
19	Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends in Microbiology, 2011, 19, 307-314.	7.7	156
20	Acid-Susceptible Mutants of <i>Mycobacterium tuberculosis </i> Share Hypersusceptibility to Cell Wall and Oxidative Stress and to the Host Environment. Journal of Bacteriology, 2009, 191, 625-631.	2.2	155
21	Biosynthesis and Recycling of Nicotinamide Cofactors in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2008, 283, 19329-19341.	3.4	152
22	Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Molecular Microbiology, 1999, 33, 933-945.	2.5	143
23	A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Molecular Microbiology, 2002, 35, 1375-1382.	2.5	138
24	Genome-wide gene expression tuning reveals diverse vulnerabilities of M.Âtuberculosis. Cell, 2021, 184, 4579-4592.e24.	28.9	131
25	Evaluating the Sensitivity of Mycobacterium tuberculosis to Biotin Deprivation Using Regulated Gene Expression. PLoS Pathogens, 2011, 7, e1002264.	4.7	127
26	Large-scale chemical–genetics yields new M. tuberculosis inhibitor classes. Nature, 2019, 571, 72-78.	27.8	119
27	Virulence of Mycobacterium tuberculosis Depends on Lipoamide Dehydrogenase, a Member of Three Multienzyme Complexes. Cell Host and Microbe, 2011, 9, 21-31.	11.0	115
28	Silencing Essential Protein Secretion in Mycobacterium smegmatis by Using Tetracycline Repressors. Journal of Bacteriology, 2007, 189, 4614-4623.	2.2	104
29	An outer membrane channel protein of <i>Mycobacterium tuberculosis</i> with exotoxin activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6750-6755.	7.1	102
30	Dihydrolipoamide Acyltransferase Is Critical for Mycobacterium tuberculosis Pathogenesis. Infection and Immunity, 2006, 74, 56-63.	2.2	99
31	Glucose Phosphorylation Is Required for Mycobacterium tuberculosis Persistence in Mice. PLoS Pathogens, 2013, 9, e1003116.	4.7	97
32	Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Research, 2009, 37, 1778-1788.	14.5	87
33	Mycobacterial Nonhomologous End Joining Mediates Mutagenic Repair of Chromosomal Double-Strand DNA Breaks. Journal of Bacteriology, 2007, 189, 5237-5246.	2.2	84
34	LprG-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004376.	4.7	82
35	Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in <i>Mycobacterium tuberculosis</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2225-E2232.	7.1	82
36	Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nature Communications, 2019, 10, 4970.	12.8	82

#	Article	IF	Citations
37	The Mycobacterium tuberculosis Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide. PLoS Pathogens, 2010, 6, e1001040.	4.7	78
38	Simultaneous Analysis of Multiple Mycobacterium tuberculosis Knockdown Mutants In Vitro and In Vivo. PLoS ONE, 2010, 5, e15667.	2.5	76
39	Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nature Communications, 2019, 10, 2928.	12.8	74
40	Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	70
41	Glycolytic and Non-glycolytic Functions of Mycobacterium tuberculosis Fructose-1,6-bisphosphate Aldolase, an Essential Enzyme Produced by Replicating and Non-replicating Bacilli. Journal of Biological Chemistry, 2011, 286, 40219-40231.	3.4	69
42	PPE Surface Proteins Are Required for Heme Utilization by <i>Mycobacterium tuberculosis</i> . MBio, 2017, 8, .	4.1	69
43	Inactivation of Fructose-1,6-Bisphosphate Aldolase Prevents Optimal Co-catabolism of Glycolytic and Gluconeogenic Carbon Substrates in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004144.	4.7	64
44	Surface hydrolysis of sphingomyelin by the outer membrane protein <scp>R</scp> v0888 supports replication of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> in macrophages. Molecular Microbiology, 2015, 97, 881-897.	2.5	63
45	Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 958-968.	3.8	62
46	Whole Cell Screen for Inhibitors of pH Homeostasis in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e68942.	2.5	60
47	Mycobacterial genes essential for the pathogen's survival in the host. Immunological Reviews, 2015, 264, 319-326.	6.0	59
48	Energy transfer between fluorescent proteins using a co-expression system in Mycobacterium smegmatis. Gene, 2001, 278, 115-124.	2.2	58
49	Perturbation of Cytochrome <i>c</i> Maturation Reveals Adaptability of the Respiratory Chain in Mycobacterium tuberculosis. MBio, 2013, 4, e00475-13.	4.1	58
50	<i>noxR3</i> , a Novel Gene from <i>Mycobacterium tuberculosis</i> , Protects <i>Salmonella typhimurium</i> from Nitrosative and Oxidative Stress. Infection and Immunity, 1999, 67, 3276-3283.	2.2	58
51	Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense. PLoS Pathogens, 2016, 12, e1005675.	4.7	55
52	Mycobacterium tuberculosis virulence: lipids inside and out. Nature Medicine, 2007, 13, 284-285.	30.7	54
53	Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nature Communications, 2015, 6, 7912.	12.8	54
54	<i>Mycobacterium tuberculosis</i> protease MarP activates a peptidoglycan hydrolase during acidÂstress. EMBO Journal, 2017, 36, 536-548.	7.8	54

#	Article	IF	Citations
55	Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nature Chemical Biology, 2019, 15, 889-899.	8.0	53
56	Mycobacterium Tuberculosis Metabolism and Host Interaction: Mysteries and Paradoxes. Current Topics in Microbiology and Immunology, 2012, 374, 163-188.	1.1	51
57	Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between <i>MycobacteriumÂsmegmatis</i> and <i>MycobacteriumÂtuberculosis</i> MBio, 2017, 8, .	4.1	51
58	Triosephosphate Isomerase Is Dispensable <i>In Vitro</i> yet Essential for Mycobacterium tuberculosis To Establish Infection. MBio, 2014, 5, e00085.	4.1	48
59	Disruption of an M. tuberculosis Membrane Protein Causes a Magnesium-dependent Cell Division Defect and Failure to Persist in Mice. PLoS Pathogens, 2015, 11, e1004645.	4.7	47
60	Fumarase Deficiency Causes Protein and Metabolite Succination and Intoxicates Mycobacterium tuberculosis. Cell Chemical Biology, 2017, 24, 306-315.	5.2	44
61	Critical Impact of Peptidoglycan Precursor Amidation on the Activity of <scp>l,d</scp> â€Transpeptidases from <i>Enterococcus faecium</i> and <i>Mycobacterium tuberculosis</i> . Chemistry - A European Journal, 2018, 24, 5743-5747.	3.3	44
62	Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. ELife, 2022, 11, .	6.0	44
63	Structural Insight into Serine Protease Rv3671c thatÂProtects M. tuberculosis from Oxidative and Acidic Stress. Structure, 2010, 18, 1353-1363.	3.3	40
64	Regulated Expression Systems for Mycobacteria and Their Applications. Microbiology Spectrum, 2014, 2, .	3.0	36
65	Construction of Conditional Knockdown Mutants in Mycobacteria. Methods in Molecular Biology, 2015, 1285, 151-175.	0.9	36
66	Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathogens, 2016, 12, e1006043.	4.7	35
67	Target-Based Screen Against a Periplasmic Serine Protease That Regulates Intrabacterial pH Homeostasis in <i>Mycobacterium tuberculosis</i>). ACS Chemical Biology, 2015, 10, 364-371.	3.4	33
68	Peptidoglycan Hydrolases RipA and Ami 1 Are Critical for Replication and Persistence of Mycobacterium tuberculosis in the Host. MBio, 2020, 11 , .	4.1	32
69	Substrate Specificity of MarP, a Periplasmic Protease Required for Resistance to Acid and Oxidative Stress in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2013, 288, 12489-12499.	3.4	31
70	Growth of <i>Mycobacterium tuberculosis </i> at acidic pH depends on lipid assimilation and is accompanied by reduced GAPDH activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
71	Controlling gene expression in mycobacteria. Future Microbiology, 2006, 1, 177-184.	2.0	27
72	Isolation of Plasmids from E. coli by Alkaline Lysis. , 2003, 235, 75-78.		25

#	Article	IF	Citations
73	Multiform antimicrobial resistance from a metabolic mutation. Science Advances, 2021, 7, .	10.3	25
74	Targeting protein biotinylation enhances tuberculosis chemotherapy. Science Translational Medicine, 2018, 10, .	12.4	24
75	Depletion of the DarG antitoxin in <i>Mycobacterium tuberculosis</i> triggers the DNAâ€damage response and leads to cell death. Molecular Microbiology, 2020, 114, 641-652.	2.5	24
76	CinA mediates multidrug tolerance in Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2203.	12.8	22
77	Tissue Distribution of Doxycycline in Animal Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
78	Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201632119.	7.1	20
79	Cytosolic Phospholipase A2 Enzymes Are Not Required by Mouse Bone Marrow-Derived Macrophages for the Control of Mycobacterium tuberculosis In Vitro. Infection and Immunity, 2006, 74, 1751-1756.	2.2	17
80	Spectrum of latent tuberculosis â€" existing tests cannot resolve the underlying phenotypes: author's reply. Nature Reviews Microbiology, 2010, 8, 242-242.	28.6	15
81	Statistical analysis of variability in TnSeq data across conditions using zero-inflated negative binomial regression. BMC Bioinformatics, 2019, 20, 603.	2.6	15
82	Persistent Mycobacterium tuberculosis infection in mice requires PerM for successful cell division. ELife, $2019, 8, .$	6.0	15
83	Nonredundant functions of <i>Mycobacterium tuberculosis</i> stress. Molecular Microbiology, 2021, 115, 272-289.	2.5	14
84	Identification of Rv3852 as an Agrimophol-Binding Protein in Mycobacterium tuberculosis. PLoS ONE, 2015, 10, e0126211.	2.5	13
85	A broader spectrum of tuberculosis. Nature Medicine, 2016, 22, 1076-1077.	30.7	13
86	Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection. Nature Communications, 2021, 12, 6593.	12.8	11
87	Two Interacting ATPases Protect Mycobacterium tuberculosis from Glycerol and Nitric Oxide Toxicity. Journal of Bacteriology, 2020, 202, .	2.2	8
88	A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nature Communications, 2022, 13, 2255.	12.8	8
89	Mycobacterium tuberculosis gene Rv2136c is dispensable for acid resistance and virulence in mice. Tuberculosis, 2011, 91, 343-347.	1.9	7
90	Identification of Enolase as the Target of 2-Aminothiazoles in Mycobacterium tuberculosis. Frontiers in Microbiology, 2018, 9, 2542.	3.5	7

#	Article	IF	CITATIONS
91	Genetic models of latent tuberculosis in mice reveal differential influence of adaptive immunity. Journal of Experimental Medicine, 2021, 218, .	8.5	6
92	Isolation of Plasmids from E. coli by Boiling Lysis. , 2003, 235, 79-82.		4
93	Rv0954 Is a Member of the Mycobacterial Cell Division Complex. Frontiers in Microbiology, 2021, 12, 626461.	3.5	4
94	Metabolic bifunctionality of Rv0812 couples folate and peptidoglycan biosynthesis in <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2021, 218, .	8.5	4
95	Mycobacterium tuberculosis infection is exacerbated in mice lacking lecithin:retinol acyltransferase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165909.	3.8	2
96	Mycobacterial survival strategies in the phagosome: defence against host stresses., 2009, 11, 1170.		1
97	Regulated Expression Systems for Mycobacteria and Their Applications. , 0, , 225-238.		1
98	Introduction: genomic approaches in infectious diseases. Microbes and Infection, 2006, 8, 1611-1612.	1.9	0