Tie-Rui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6199350/publications.pdf

Version: 2024-02-01

310 papers

42,354 citations

112 h-index 2385 198 g-index

323 all docs 323 docs citations

times ranked

323

30412 citing authors

#	Article	IF	CITATIONS
1	Efficient photocatalytic aerobic oxidation of bisphenol A via gas-liquid-solid triphase interfaces. Materials Today Energy, 2022, 23, 100908.	4.7	12
2	Artificial photocatalytic nitrogen fixation: Where are we now? Where is its future?. Molecular Catalysis, 2022, 518, 112107.	2.0	11
3	Photothermal methane coupling into liquid fuels with hydrogen evolution over nanocatalysts based on layered double hydroxide (LDH). Nanotechnology, 2022, 33, 185401.	2.6	1
4	Atom manufacturing of photocatalyst towards solar CO ₂ reduction. Reports on Progress in Physics, 2022, 85, 026501.	20.1	8
5	Photothermalâ€Assisted Photocatalytic Nitrogen Oxidation to Nitric Acid on Palladiumâ€Decorated Titanium Oxide. Advanced Energy Materials, 2022, 12, .	19.5	34
6	Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy, 2022, 96, 107046.	16.0	37
7	Triphase Photocatalytic CO ₂ Reduction over Silverâ€Decorated Titanium Oxide at a Gas–Water Boundary. Angewandte Chemie - International Edition, 2022, 61, .	13.8	88
8	Triphase Photocatalytic CO ₂ Reduction over Silverâ€Decorated Titanium Oxide at a Gas–Water Boundary. Angewandte Chemie, 2022, 134, .	2.0	33
9	A Review on the Bioinspired Photocatalysts and Photocatalytic Systems. Advanced Sustainable Systems, 2022, 6, .	5.3	22
10	Layered Double Hydroxide Engineering for the Photocatalytic Conversion of Inactive Carbon and Nitrogen Molecules. ACS ES&T Engineering, 2022, 2, 1088-1102.	7.6	12
11	Deciphering the Dynamic Structure Evolution of Fe- and Ni-Codoped CoS ₂ for Enhanced Water Oxidation. ACS Catalysis, 2022, 12, 3743-3751.	11.2	59
12	Strain Engineering: A Boosting Strategy for Photocatalysis. Advanced Materials, 2022, 34, e2200868.	21.0	82
13	Ordered PtFelr Intermetallic Nanowires Prepared through a Silicaâ€Protection Strategy for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
14	Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2022, 12, .	19.5	81
15	Fe Singleâ€Atom Catalysts on MOFâ€5 Derived Carbon for Efficient Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	19.5	150
16	Ordered PtFeIr Intermetallic Nanowires Prepared through a Silicaâ€Protection Strategy for the Oxygen Reduction Reaction. Angewandte Chemie, 2022, 134, .	2.0	8
17	Interfacial wettability and mass transfer characterizations for gas–liquid–solid tripleâ€phase catalysis. Exploration, 2022, 2, .	11.0	21
18	Electronically Activated Fe ₅ C ₂ via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins. ACS Catalysis, 2022, 12, 5316-5326.	11.2	19

#	Article	IF	CITATIONS
19	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	30.8	82
20	Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance. Science Bulletin, 2022, 67, 1264-1273.	9.0	36
21	Progress and Prospect of Photothermal Catalysis. Chemical Research in Chinese Universities, 2022, 38, 723-734.	2.6	34
22	NiFe Nanoalloys Derived from Layered Double Hydroxides for Photothermal Synergistic Reforming of CH ₄ with CO ₂ . Advanced Functional Materials, 2022, 32, .	14.9	35
23	Mesoporeâ€Rich Fe–N–C Catalyst with FeN ₄ –O–NC Singleâ€Atom Sites Delivers Remarkabl Oxygen Reduction Reaction Performance in Alkaline Media. Advanced Materials, 2022, 34, e2202544.	e 21.0	168
24	Unveiling the critical role of TiO2-supported atomically dispersed Cu species for enhanced photofixation of N2 to nitrate. Fundamental Research, 2022, , .	3.3	1
25	Photodriven CO ₂ Hydrogenation into Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2022, 13, 5291-5303.	4.6	18
26	Light-Driven Hydrogen Production from Steam Methane Reforming via Bimetallic PdNi Catalysts Derived from Layered Double Hydroxide Nanosheets. Energy & Energy & 2022, 36, 11627-11635.	5.1	28
27	Highly dispersed platinum deposited on nitrogen-doped vertical graphene array for efficient electrochemical hydrogen evolution. 2D Materials, 2022, 9, 045011.	4.4	5
28	A Reliable and Precise Protocol for Urea Quantification in Photo/Electrocatalysis. Small Methods, 2022, 6, .	8.6	26
29	Vacancyâ€Rich MXeneâ€Immobilized Ni Single Atoms as a Highâ€Performance Electrocatalyst for the Hydrazine Oxidation Reaction. Advanced Materials, 2022, 34, .	21.0	57
30	Synergistic effect of triphase interface and fluid control for efficient photosynthesis of residue-free H2O2. Applied Catalysis B: Environmental, 2022, 317, 121731.	20.2	10
31	Subâ€3 nm Ultrafine Cu ₂ O for Visible Light Driven Nitrogen Fixation. Angewandte Chemie - International Edition, 2021, 60, 2554-2560.	13.8	134
32	A Metalâ€Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. Solar Rrl, 2021, 5, 2000488.	5.8	16
33	Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure nanocomposite. Nano Energy, 2021, 79, 105483.	16.0	51
34	Band structure engineering and defect control of Ta3N5 with enhanced photoelectrochemical water oxidation performance. Science Bulletin, 2021, 66, 651-652.	9.0	3
35	Substitutionally Dispersed Highâ€Oxidation CoO <i>_x</i> Clusters in the Lattice of Rutile TiO ₂ Triggering Efficient CoTi Cooperative Catalytic Centers for Oxygen Evolution Reactions. Advanced Functional Materials, 2021, 31, 2009610.	14.9	82
36	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis. Advanced Energy Materials, 2021, 11, 2003323.	19.5	150

#	Article	IF	CITATIONS
37	Subâ€3 nm Ultrafine Cu 2 O for Visible Light Driven Nitrogen Fixation. Angewandte Chemie, 2021, 133, 2584-2590.	2.0	13
38	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie, 2021, 133, 3327-3335.	2.0	189
39	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 3290-3298.	13.8	254
40	Atomicâ€Level Charge Separation Strategies in Semiconductorâ€Based Photocatalysts. Advanced Materials, 2021, 33, e2005256.	21.0	215
41	Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction. Acta Chimica Sinica, 2021, 79, 369.	1.4	4
42	Feâ€Based Catalysts for the Direct Photohydrogenation of CO ₂ to Valueâ€Added Hydrocarbons. Advanced Energy Materials, 2021, 11, 2002783.	19.5	90
43	Solar Photocatalysis. Solar Rrl, 2021, 5, 2100037.	5.8	16
44	Heterostructured MoSe ₂ /Oxygen-Terminated Ti ₃ C ₂ MXene Architectures for Efficient Electrocatalytic Hydrogen Evolution. Energy & Energ	5.1	76
45	Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Research, 2021, 14, 3795-3809.	10.4	80
46	Molten NaClâ€Assisted Synthesis of Porous Feâ€N Electrocatalysts with a High Density of Catalytically Accessible FeN ₄ ÂActive Sites and Outstanding Oxygen Reduction Reaction Performance. Advanced Energy Materials, 2021, 11, 2100219.	19.5	160
47	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. Advanced Energy Materials, 2021, 11, 2100303.	19.5	61
48	Recent Advancements of Porphyrinâ€Like Singleâ€Atom Catalysts: Synthesis and Applications. Small Structures, 2021, 2, 2100007.	12.0	77
49	Efficient Combination of Gâ€C ₃ N ₄ and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. Small, 2021, 17, e2007523.	10.0	93
50	Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Research, 2021, 14, 4584-4590.	10.4	31
51	Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catalysis, 2021, 11, 4739-4769.	11.2	173
52	Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Research, 2021, 14, 4828-4832.	10.4	62
53	MILâ€101â€Derived Mesoporous Carbon Supporting Highly Exposed Fe Singleâ€Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. Advanced Materials, 2021, 33, e2101038.	21.0	327
54	Rationally Designed Ni–Ni ₃ S ₂ Interfaces for Efficient Overall Water Electrolysis. Advanced Energy and Sustainability Research, 2021, 2, 2100078.	5.8	40

#	Article	IF	CITATIONS
55	Oxygen Reduction Reaction: Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction (Adv. Energy Mater. 17/2021). Advanced Energy Materials, 2021, 11, 2170067.	19.5	2
56	In Situ Detection of Low Amounts of Ammonia. Trends in Chemistry, 2021, 3, 339-341.	8.5	7
57	Layered double hydroxideâ€based photocatalytic materials toward renewable solar fuels production. InformaÄnÃ-Materiály, 2021, 3, 719-738.	17.3	105
58	FeNC Electrocatalysts with Densely Accessible FeN ₄ Sites for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102420.	14.9	110
59	Foreword to the Special Issue on Photocatalysis. Transactions of Tianjin University, 2021, 27, 279-279.	6.4	0
60	Nitrogen-doped Zn–Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Metals, 2021, 40, 3117.	7.1	22
61	Engineering local coordination environments and site densities for highâ€performance Feâ€N oxygen reduction reaction electrocatalysis. SmartMat, 2021, 2, 154-175.	10.7	81
62	Emerging Solar Photocatalysis. Solar Rrl, 2021, 5, 2100252.	5.8	5
63	Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nature Catalysis, 2021, 4, 565-574.	34.4	121
64	Titaniaâ€Supported Ni ₂ P/Ni Catalysts for Selective Solarâ€Driven CO Hydrogenation. Advanced Materials, 2021, 33, e2103248.	21.0	41
65	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 21728-21731.	13.8	63
66	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. Angewandte Chemie, 2021, 133, 21896-21899.	2.0	8
67	Atomic Cationâ€Vacancy Engineering of NiFeâ€Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 24817-24824.	2.0	39
68	Photothermalâ€Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper. Angewandte Chemie - International Edition, 2021, 60, 22963-22969.	13.8	76
69	Enhancing the Supply of Activated Hydrogen to Promote Photocatalytic Nitrogen Fixation. , 2021, 3, 1521-1527.		35
70	Atomic Cationâ€Vacancy Engineering of NiFe‣ayered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 24612-24619.	13.8	259
71	Photothermalâ€Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper. Angewandte Chemie, 2021, 133, 23145-23151.	2.0	12
72	Charge localization to optimize reactant adsorption on KCu7S4/CuO interfacial structure toward selective CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 298, 120531.	20.2	25

#	Article	IF	Citations
73	Three-phase electrochemistry for green ethylene production. Current Opinion in Electrochemistry, 2021, 30, 100789.	4.8	6
74	Three Phase Interface Engineering for Advanced Catalytic Applications. ACS Applied Energy Materials, 2021, 4, 1045-1052.	5.1	22
75	Flux-Assisted Low Temperature Synthesis of SnNb ₂ O ₆ Nanoplates with Enhanced Visible Light Driven Photocatalytic H ₂ -Production. Journal of Physical Chemistry C, 2021, 125, 23219-23225.	3.1	8
76	A Rhenium Singleâ€Atom Catalyst for the Electrocatalytic Oxygen Reduction Reaction. ChemPlusChem, 2021, 86, 1635-1639.	2.8	7
77	Nanostructured Photothermal Materials for Environmental and Catalytic Applications. Molecules, 2021, 26, 7552.	3.8	12
78	Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy, 2020, 70, 104445.	16.0	118
79	Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Materials Today, 2020, 34, 78-91.	14.2	253
80	Manganese Oxide Modified Nickel Catalysts for Photothermal CO Hydrogenation to Light Olefins. Advanced Energy Materials, 2020, 10, 1902860.	19.5	56
81	Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems. Applied Catalysis B: Environmental, 2020, 264, 118518.	20.2	52
82	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie, 2020, 132, 1735-1743.	2.0	40
83	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 1718-1726.	13.8	452
84	Hollow PtFe Alloy Nanoparticles Derived from Ptâ€Fe ₃ O ₄ Dimers through a Silicaâ€Protection Reduction Strategy as Efficient Oxygen Reduction Electrocatalysts. Chemistry - A European Journal, 2020, 26, 4090-4096.	3.3	49
85	Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts. Chemical Research in Chinese Universities, 2020, 36, 1006-1012.	2.6	14
86	Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78, 105375.	16.0	148
87	Alkali Etching of Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic N ₂ Reduction to NH ₃ . Advanced Energy Materials, 2020, 10, 2002199.	19.5	185
88	Electrochemical urea production directly from N2 and CO2 in ambient aqueous media. Science China Chemistry, 2020, 63, 1580-1581.	8.2	7
89	Photocatalytic CO ₂ Reduction to CO over Ni Single Atoms Supported on Defectâ€Rich Zirconia. Advanced Energy Materials, 2020, 10, 2002928.	19.5	263
90	Piezocatalysis and Piezoâ€Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials, 2020, 30, 2005158.	14.9	435

#	Article	IF	Citations
91	Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications. Journal of Semiconductors, 2020, 41, 091708.	3.7	11
92	Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications. Journal of Materials Chemistry A, 2020, 8, 23142-23161.	10.3	46
93	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	19.5	181
94	Driving the Future with Photocatalytic Solar Fuels. ChemPhysChem, 2020, 21, 1081-1082.	2.1	0
95	Reassessing effects of Zn2+ toward oxygen electrocatalytic activity in ternary spinel. Science Bulletin, 2020, 65, 974-976.	9.0	2
96	Recent Advances in Conjugated Polymers for Visibleâ€Lightâ€Driven Water Splitting. Advanced Materials, 2020, 32, e1907296.	21.0	279
97	Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Nanoscale, 2020, 12, 13129-13136.	5.6	110
98	Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nature Communications, 2020, 11, 3028.	12.8	294
99	Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Science Bulletin, 2020, 65, 1743-1751.	9.0	115
100	Revealing active sites in N-doped carbon for CO2 electroreduction by well-defined molecular model catalysts. Science Bulletin, 2020, 65, 781-782.	9.0	4
101	Recent advances in niobium-based semiconductors for solar hydrogen production. Coordination Chemistry Reviews, 2020, 419, 213399.	18.8	57
102	Photocatalytic alkane production from fatty acid decarboxylation over hydrogenated catalyst. Science Bulletin, 2020, 65, 870-871.	9.0	2
103	Dynamic changes of single-atom Pt-C3N4 photocatalysts. Science Bulletin, 2020, 65, 1055-1056.	9.0	10
104	How to make use of methanol in green catalytic hydrogen production?. Nano Select, 2020, 1, 12-29.	3.7	60
105	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. Matter, 2020, 3, 571-585.	10.0	36
106	CoAl-layered double hydroxide nanosheet-based fluorescence assay for fast DNA detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118618.	3.9	13
107	Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Science Bulletin, 2020, 65, 934-943.	9.0	151
108	Single-atom Ni integrated gas diffusion electrode for high performance carbon dioxide electroreduction. Science Bulletin, 2020, 65, 696-697.	9.0	2

#	Article	IF	CITATIONS
109	FeOâ \in CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Materials, 2020, 12, .	7.9	76
110	Facet-charge-induced coupling dependent interfacial photocharge separation: A case of BiOI/g-C3N4 p-n junction. Applied Catalysis B: Environmental, 2020, 267, 118697.	20.2	202
111	Efficient Photocatalytic Nitrogen Fixation over Cu <i>^Î</i> ⁺ â€Modified Defective ZnAlâ€Layered Double Hydroxide Nanosheets. Advanced Energy Materials, 2020, 10, 1901973.	19.5	173
112	Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO ₂ Photoreduction on BiOIO ₃ Single Crystals. Advanced Materials, 2020, 32, e1908350.	21.0	372
113	Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy, 2020, 72, 104730.	16.0	171
114	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie, 2020, 132, 13157-13162.	2.0	16
115	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie - International Edition, 2020, 59, 13057-13062.	13.8	222
116	Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Science Bulletin, 2020, 65, 987-994.	9.0	205
117	The Journey toward Low Temperature, Low Pressure Catalytic Nitrogen Fixation. Advanced Energy Materials, 2020, 10, 2000659.	19.5	127
118	Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Applied Catalysis B: Environmental, 2020, 275, 119144.	20.2	194
119	Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	6
120	(Invited) Nanostructured Layered Double Hydroxide Based Photocatalysts for Solar Fuels and High-Value Chemicals. ECS Meeting Abstracts, 2020, MA2020-01, 1750-1750.	0.0	0
121	Noble-Metal-Free Electrocatalysis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	1
122	Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem, 2019, 1, 100013.	19.1	204
123	A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10, 4585.	12.8	441
124	Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy, 2019, 65, 104023.	16.0	117
125	Defect Engineering in Photocatalytic Nitrogen Fixation. ACS Catalysis, 2019, 9, 9739-9750.	11.2	286
126	Editorial for rare metals, special issue on photocatalysis. Rare Metals, 2019, 38, 359-360.	7.1	6

#	Article	IF	CITATIONS
127	A Nanozyme with Photoâ€Enhanced Dual Enzymeâ€Like Activities for Deep Pancreatic Cancer Therapy. Angewandte Chemie, 2019, 131, 12754-12761.	2.0	71
128	A Nanozyme with Photoâ€Enhanced Dual Enzymeâ€Like Activities for Deep Pancreatic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 12624-12631.	13.8	345
129	A Simple Synthetic Strategy toward Defectâ€Rich Porous Monolayer NiFeâ€Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2019, 9, 1900881.	19.5	363
130	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. Angewandte Chemie - International Edition, 2019, 58, 8443-8447.	13.8	37
131	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. Angewandte Chemie, 2019, 131, 8531-8535.	2.0	5
132	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Research, 2019, 12, 2385-2389.	10.4	192
133	Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy, 2019, 59, 644-650.	16.0	553
134	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C ₁ â€Solarchemie. Angewandte Chemie, 2019, 131, 17690-17715.	2.0	31
135	From Solar Energy to Fuels: Recent Advances in Lightâ€Driven C ₁ Chemistry. Angewandte Chemie - International Edition, 2019, 58, 17528-17551.	13.8	285
136	Tuning Oxygen Vacancies in Ultrathin TiO ₂ Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. Advanced Materials, 2019, 31, e1806482.	21.0	732
137	Intrinsic Carbonâ€Defectâ€Driven Electrocatalytic Reduction of Carbon Dioxide. Advanced Materials, 2019, 31, e1808276.	21.0	263
138	Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. Nano Energy, 2019, 60, 467-475.	16.0	67
139	Pd Singleâ€Atom Catalysts on Nitrogenâ€Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Advanced Materials, 2019, 31, e1900509.	21.0	262
140	Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Metals, 2019, 38, 397-403.	7.1	49
141	Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH ₃ Production Rates?. Advanced Science, 2019, 6, 1802109.	11.2	379
142	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	38.1	350
143	Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. Journal of Energy Chemistry, 2019, 34, 57-63.	12.9	78
144	(Invited) Layered Double Hydroxide Based Nanostructured Photocatalysts for Efficient Solar Fuels. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	Citations
145	Subâ€3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. Advanced Energy Materials, 2018, 8, 1703585.	19.5	274
146	Self-assembling and photophysical properties of the organogelators based on cyanostyryl-substituted carbazoles. Comptes Rendus Chimie, 2018, 21, 88-96.	0.5	2
147	Silicaâ€Protected Ultrathin Ni ₃ FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH ₃ BH ₃ . Advanced Energy Materials, 2018, 8, 1702780.	19.5	66
148	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468.	10.4	199
149	Photothermal CO ₂ Hydrogenation: Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015.	21.0	3
150	Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Applied Catalysis B: Environmental, 2018, 226, 441-450.	20.2	169
151	3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Applied Catalysis B: Environmental, 2018, 232, 562-573.	20.2	231
152	Two-step hydrothermal synthesis of Sn2Nb2O7 nanocrystals with enhanced visible-light-driven H2 evolution activity. Chinese Journal of Catalysis, 2018, 39, 395-400.	14.0	17
153	Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons. Advanced Materials, 2018, 30, 1704663.	21.0	309
154	An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NOx removal. Pure and Applied Chemistry, 2018, 90, 353-361.	1.9	12
155	Thicknessâ€Dependent Facet Junction Control of Layered BiOlO (sub>3 (/sub> Single Crystals for Highly Efficient CO (sub>2 (/sub> Photoreduction. Advanced Functional Materials, 2018, 28, 1804284.	14.9	358
156	Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. Nano Energy, 2018, 50, 383-392.	16.0	226
157	A core–satellite structured Z-scheme catalyst Cd _{0.5} Zn _{0.5} S/BiVO ₄ for highly efficient and stable photocatalytic water splitting. Journal of Materials Chemistry A, 2018, 6, 16932-16942.	10.3	154
158	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	21.0	100
159	Photothermal Catalysis: Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins (Adv. Mater. 31/2018). Advanced Materials, 2018, 30, 1870230.	21.0	6
160	Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Applied Catalysis B: Environmental, 2018, 239, 599-608.	20.2	143
161	Black phosphorus quantum dot/g -C3N4 composites for enhanced CO2 photoreduction to CO. Science China Materials, 2018, 61, 1159-1166.	6.3	126
162	Coâ€Based Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for the Photothermal Production of Light Olefins. Advanced Materials, 2018, 30, e1800527.	21.0	139

#	Article	IF	CITATIONS
163	Nanocrystals@Hollow Mesoporous Silica Reverseâ∈Bumpyâ∈Ball Structure Nanoreactors by a Versatile Microemulsionâ€Templated Approach. Small Methods, 2018, 2, 1800105.	8.6	23
164	Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. Nature Communications, 2018, 9, 2379.	12.8	60
165	"Naked―Magnetically Recyclable Mesoporous Au–γâ€Fe ₂ O ₃ Nanocrystal Clusters: A Highly Integrated Catalyst System. Advanced Functional Materials, 2017, 27, 1606215.	14.9	85
166	Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Advanced Materials, 2017, 29, 1605148.	21.0	1,616
167	Catalysts: "Naked―Magnetically Recyclable Mesoporous Au–γâ€Fe ₂ O ₃ Nanocrystal Clusters: A Highly Integrated Catalyst System (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
168	Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An Allâ€pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2017, 29, 1606521.	21.0	370
169	Readily attainable spongy foam photocatalyst for promising practical photocatalysis. Applied Catalysis B: Environmental, 2017, 208, 75-81.	20.2	43
170	Photocatalysis: Alkaliâ€Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution (Adv. Mater. 16/2017). Advanced Materials, 2017, 29, .	21.0	10
171	Selfâ€Assembled Au/CdSe Nanocrystal Clusters for Plasmonâ€Mediated Photocatalytic Hydrogen Evolution. Advanced Materials, 2017, 29, 1700803.	21.0	311
172	Defectâ€Engineered Ultrathin δâ€MnO ₂ Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1700005.	19.5	553
173	Electrocatalysts: Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An Allâ€pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution (Adv. Mater.) Tj ETQq1 1 0.7	784231.04 rg	BT\$ © verloc
174	Precursor-reforming protocol to 3D mesoporous g-C 3 N 4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy, 2017, 38, 72-81.	16.0	596
175	Graphene with Atomic-Level In-Plane Decoration of $\langle i \rangle h \langle j \rangle$ -BN Domains for Efficient Photocatalysis. Chemistry of Materials, 2017, 29, 2769-2776.	6.7	61
176	Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation. Advanced Materials, 2017, 29, 1703828.	21.0	524
177	Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution. Nano Energy, 2017, 41, 738-748.	16.0	215
178	3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries' cathodes. Nano Energy, 2017, 40, 382-389.	16.0	153
179	Achieving UV and visible-light photocatalytic activity enhancement of Agl/BiOIO 3 heterostructure: Decomposition for diverse industrial contaminants and high mineralization ability. Chinese Chemical Letters, 2017, 28, 2244-2250.	9.0	44
180	Water Splitting: Defectâ€Engineered Ultrathin δâ€MnO ₂ Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .	19.5	6

#	Article	IF	CITATIONS
181	Recent Progress in Photocatalytic CO ₂ Reduction Over Perovskite Oxides. Solar Rrl, 2017, 1, 1700126.	5.8	224
182	NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2017, 7, 1700467.	19.5	422
183	Macroscopic Polarization Enhancement Promoting Photo―and Piezoelectricâ€Induced Charge Separation and Molecular Oxygen Activation. Angewandte Chemie - International Edition, 2017, 56, 11860-11864.	13.8	850
184	Macroscopic Polarization Enhancement Promoting Photo―and Piezoelectric―Induced Charge Separation and Molecular Oxygen Activation. Angewandte Chemie, 2017, 129, 12022-12026.	2.0	73
185	Effect of Nitrogen Doping Level on the Performance of Nâ€Doped Carbon Quantum Dot/TiO ₂ Composites for Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4650-4656.	6.8	171
186	Fabrication of Heterogeneous-Phase Solid-Solution Promoting Band Structure and Charge Separation for Enhancing Photocatalytic CO ₂ Reduction: A Case of Zn <i>_X</i> Ca _{1â€"<i>X</i>} In ₂ S ₄ . ACS Applied Materials & Amp; Interfaces, 2017, 9, 27773-27783.	8.0	68
187	Template-free precursor-surface-etching route to porous, thin g-C ₃ N ₄ nanosheets for enhancing photocatalytic reduction and oxidation activity. Journal of Materials Chemistry A, 2017, 5, 17452-17463.	10.3	324
188	Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Applied Catalysis B: Environmental, 2017, 219, 526-537.	20.2	264
189	Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: Photocatalysis and piezoelectric-catalysis and mechanism insight. Applied Catalysis B: Environmental, 2017, 219, 550-562.	20.2	215
190	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093.	2.1	22
190 191		2.1	22
	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093. Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts		
191	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093. Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, . Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017).	21.0	3
191 192	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093. Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, . Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, . Rational design on 3D hierarchical bismuth oxylodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Applied	21.0	3 5
191 192 193	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093. Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, . Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, . Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Applied Catalysis B: Environmental, 2017, 203, 879-888. A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185. Multishelled Niâ€Rich Li(Ni <i>×sub>×Hollow Fibers with Low Cation Mixing as Highâ€Performance Cathode Materials for Liâ€ion Batteries. Advanced Science,</i>	21.0 19.5 20.2	3 5 289
191 192 193	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093. Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, . Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, . Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Applied Catalysis B: Environmental, 2017, 203, 879-888. A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185. Multishelled Niâ€Rich Li(Ni <i>></i>	21.0 19.5 20.2 2.8	3 5 289 30
191 192 193 194	Carbon Dioxide Utilization Coming of Age. ChemPhysChem, 2017, 18, 3091-3093. Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, . Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, . Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. Applied Catalysis B: Environmental, 2017, 203, 879-888. A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185. Multishelled Niâ€Rich Li(Ni <i>sub>Hollow Fibers with Low Cation Mixing as Highâ€Performance Cathode Materials for Liâ€kon Batteries. Advanced Science, 2017. 4. 1600262. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Applied Catalysis B:</i>	21.0 19.5 20.2 2.8	3 5 289 30 172

#	Article	IF	CITATIONS
199	Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. Advanced Energy Materials, 2016, 6, 1501974.	19.5	389
200	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie - International Edition, 2016, 55, 2167-2170.	13.8	105
201	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie - International Edition, 2016, 55, 4215-4219.	13.8	176
202	Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials, 2016, 28, 1668-1674.	21.0	663
203	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	19.5	253
204	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie, 2016, 128, 2207-2210.	2.0	13
205	Rücktitelbild: Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew.) Tj ETQq1 1 0.	7 & 46314 rg	;BT Overloo
206	Facile <i>In Situ</i> Self-Sacrifice Approach to Ternary Hierarchical Architecture Ag/AgX (X = Cl, Br,) Tj ETQq0 0 0 r Mechanism. ACS Sustainable Chemistry and Engineering, 2016, 4, 3305-3315.	rgBT /Over 6.7	lock 10 Tf 5 65
207	Hydrogen Evolution: CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 6, .	19.5	3
208	Carbon Nanoframes: Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts (Adv. Mater.) Tj ETQq	0 201. ØorgBT	/ @ verlock I
209	Achieving tunable photocatalytic activity enhancement by elaborately engineering composition-adjustable polynary heterojunctions photocatalysts. Applied Catalysis B: Environmental, 2016, 194, 62-73.	20.2	73
210	Ultrafine NiO Nanosheets Stabilized by TiO ₂ from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-6524.	13.7	597
211	Phototherapy: Metal–Organicâ€Frameworkâ€Derived Mesoporous Carbon Nanospheres Containing Porphyrinâ€Like Metal Centers for Conformal Phototherapy (Adv. Mater. 38/2016). Advanced Materials, 2016, 28, 8318-8318.	21.0	5
212	Frontispiz: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, .	2.0	0
213	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Advanced Materials, 2016, 28, 9454-9477.	21.0	622
214	Metal–Organicâ€Frameworkâ€Derived Mesoporous Carbon Nanospheres Containing Porphyrinâ€Like Metal Centers for Conformal Phototherapy. Advanced Materials, 2016, 28, 8379-8387.	21.0	264
215	Carbon Nanosheets: Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5140-5140.	21.0	44
216	Frontispiece: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, .	13.8	0

#	Article	lF	Citations
217	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 14952-14957.	13.8	38
218	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, 15176-15181.	2.0	5
219	Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 5080-5086.	21.0	718
220	Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFeâ€Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Advanced Energy Materials, 2016, 6, 1502585.	19.5	668
221	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie, 2016, 128, 4287-4291.	2.0	33
222	Facile synthesis of ultrathin SnNb ₂ O ₆ nanosheets towards improved visible-light photocatalytic H ₂ -production activity. Chemical Communications, 2016, 52, 8239-8242.	4.1	79
223	In situ assembly of BiOl@Bi 12 O 17 Cl 2 p - n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOl {001} active facets for robust and nonselective photocatalysis. Applied Catalysis B: Environmental, 2016, 199, 75-86.	20.2	577
224	Water Splitting: Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFeâ€Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst (Adv. Energy Mater.) Tj ETQq0 0 0 rgB	T /10/væ rlod	ck 40 Tf 50 4
225	pH-Responsive reversible self-assembly of gold nanoparticles into nanovesicles. Nanoscale, 2016, 8, 3923-3925.	5.6	45
226	Recent Advances in the Synthesis, Characterization and Application of Zn ⁺ ontaining Heterogeneous Catalysts. Advanced Science, 2016, 3, 1500424.	11.2	42
227	Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 2016, 52, 1689-1692.	4.1	45
228	lodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chemical Communications, 2016, 52, 354-357.	4.1	59
229	Photoreduction: Defectâ€Rich Ultrathin ZnAl‣ayered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7823-7823.	21.0	25
230	Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. Applied Surface Science, 2015, 358, 485-490.	6.1	23
231	Defectâ€Rich Ultrathin ZnAlâ€Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO ₂ to CO with Water. Advanced Materials, 2015, 27, 7824-7831.	21.0	608
232	In situ crystallization for fabrication of a core–satellite structured BiOBr–CdS heterostructure with excellent visible-light-responsive photoreactivity. Nanoscale, 2015, 7, 11702-11711.	5.6	134
233	Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO ₃ ^{2–} -Doped Bi _{O₂CO₃. ACS Catalysis, 2015, 5, 4094-4103.}	11.2	690
234	Synchronously Achieving Plasmonic Bi Metal Deposition and I ^{â€"} Doping by Utilizing BiOIO ₃ as the Self-Sacrificing Template for High-Performance Multifunctional Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27925-27933.	8.0	113

#	Article	IF	Citations
235	Ultraviolet photodetectors with high photosensitivity based on type-Il ZnS/SnO ₂ core/shell heterostructured ribbons. Nanoscale, 2015, 7, 5311-5319.	5.6	35
236	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 2015, 3, 1922-1928.	5.5	173
237	Highly Efficient Bi ₂ O ₂ CO ₃ Single-Crystal Lamellas with Dominantly Exposed {001} Facets. Crystal Growth and Design, 2015, 15, 534-537.	3.0	99
238	Novel Y doped Bi2WO6 photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation. Materials Characterization, 2015, 101, 166-172.	4.4	60
239	Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 4677-4680.	4.1	53
240	Mediator-free direct Z-scheme photocatalytic system: BiVO ₄ /g-C ₃ N ₄ organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Transactions, 2015, 44, 4297-4307.	3.3	326
241	Ni ³⁺ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale, 2015, 7, 7168-7173.	5.6	127
242	In Situ Co-Crystallization for Fabrication of g-C ₃ N ₄ /Bi ₅ O ₇ I Heterojunction for Enhanced Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2015, 119, 17156-17165.	3.1	165
243	In situ co-pyrolysis fabrication of CeO ₂ /g-C ₃ N ₄ n–n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties. Journal of Materials Chemistry A, 2015, 3, 17120-17129.	10.3	319
244	Copper(<scp>i</scp>) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 12556-12559.	4.1	47
245	Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chemistry, 2015, 17, 2764-2768.	9.0	64
246	Architecture-controlled synthesis of $M < sub > x < / sub > O < sub > y < / sub > (M = Ni, Fe, Cu)$ microfibres from seaweed biomass for high-performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 22708-22715.	10.3	75
247	Bi ₂ O ₂ (OH)(NO ₃) as a desirable [Bi ₂ O ₂] ²⁺ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. lournal of Materials Chemistry A. 2015. 3. 24547-24556.	10.3	352
248	Moderate band-gap-broadening induced high separation of electronâ€"hole pairs in Br substituted BiOI: a combined experimental and theoretical investigation. Physical Chemistry Chemical Physics, 2015, 17, 3673-3679.	2.8	53
249	A Versatile †Click Chemistry' Route to Sizeâ€Restricted, Robust, and Functionalizable Hydrophilic Nanocrystals. Small, 2015, 11, 1644-1648.	10.0	12
250	Underwater superoleophobic porous membrane based on hierarchical TiO ₂ nanotubes: multifunctional integration of oil–water separation, flow-through photocatalysis and self-cleaning. Journal of Materials Chemistry A, 2015, 3, 1279-1286.	10.3	204
251	Controllable sonochemical synthesis of Cu2O/Cu2(OH)3NO3 composites toward synergy of adsorption and photocatalysis. Applied Catalysis B: Environmental, 2015, 164, 234-240.	20.2	48
252	Nanoparticles: Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5731-5731.	21.0	0

#	Article	IF	CITATIONS
253	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 3344.	10.3	601
254	Oneâ€Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K ₂ Nb ₂ O ₆ . Chinese Journal of Chemistry, 2014, 32, 485-490.	4.9	24
255	<i>C</i> ₃ â€Symmetrical Cyanoâ€Substituted Triphenylbenzenes for Organogels and Organic Nanoparticles with Controllable Fluorescence and Aggregationâ€Induced Emission. European Journal of Organic Chemistry, 2014, 2014, 2907-2916.	2.4	17
256	Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light. Advanced Materials, 2014, 26, 5613-5618.	21.0	112
257	Grapheneâ€Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie - International Edition, 2014, 53, 250-254.	13.8	384
258	Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catalysis Today, 2014, 225, 158-163.	4.4	82
259	Cu ₂ O Film via Hydrothermal Redox Approach: Morphology and Photocatalytic Performance. Journal of Physical Chemistry C, 2014, 118, 16335-16343.	3.1	95
260	Broadband Visibleâ€Lightâ€Harvesting <i>trans</i> å€Bis(alkylphosphine) Platinum(II)â€Alkynyl Complexes with Singlet Energy Transfer between BODIPY and Naphthalene Diimide Ligands. Chemistry - A European Journal, 2014, 20, 14282-14295.	3.3	27
261	Facile preparation of black Nb ⁴⁺ self-doped K ₄ Nb ₆ O ₁₇ microspheres with high solar absorption and enhanced photocatalytic activity. Chemical Communications, 2014, 50, 9554.	4.1	92
262	Fabrication of Versatile Cyclodextrin-Functionalized Upconversion Luminescence Nanoplatform for Biomedical Imaging. Analytical Chemistry, 2014, 86, 6508-6515.	6.5	51
263	A mild one-step solvothermal route to truncated octahedral magnetite crystals. Particuology, 2014, 15, 51-55.	3.6	9
264	Two-component gel of a D–π–A–π–D carbazole donor and a fullerene acceptor. RSC Advances, 2013, 3, 26403.	3.6	35
265	Facile synthesis of hierarchical Znln2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. Journal of Materials Chemistry A, 2013, 1, 4552.	10.3	166
266	Type-II ZnO nanorod–SnO2 nanoparticle heterostructures: characterization of structural, optical and photocatalytic properties. Nanoscale, 2013, 5, 3828.	5.6	48
267	Low-temperature crystallization of anodized TiO2 nanotubes at the solid–gas interface and their photoelectrochemical properties. Nanoscale, 2013, 5, 6139.	5.6	26
268	Amplifying Emission Enhancement and Proton Response in a Two-Component Gel. Langmuir, 2013, 29, 417-425.	3.5	57
269	Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chemical Communications, 2013, 49, 9872.	4.1	84
270	Heterogeneous 3-D nanotubular arrays of CdS-TiO2: efficient collections of reflection light for enhanced photoelectric output. Journal of Materials Chemistry, 2012, 22, 22120.	6.7	12

#	Article	IF	Citations
271	Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. Nanoscale, 2012, 4, 6244.	5.6	143
272	Enhanced electrocatalytic activity of Pt-nanostructures prepared by electrodeposition using poly(vinyl pyrrolidone) as a shape-control agent. Electrochimica Acta, 2012, 83, 383-386.	5.2	13
273	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm, 2012, 14, 4431.	2.6	70
274	Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfidenanostructures. Dalton Transactions, 2011, 40, 243-248.	3.3	146
275	Nanostructured porous ZnO film with enhanced photocatalytic activity. Thin Solid Films, 2011, 519, 5673-5678.	1.8	66
276	Control over the permeation of silica nanoshells by surface-protected etching with water. Physical Chemistry Chemical Physics, 2010, 12, 11836.	2.8	116
277	Shape Effects of Cu ₂ O Polyhedral Microcrystals on Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 5073-5079.	3.1	359
278	Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism. Advanced Functional Materials, 2009, 19, 642-652.	14.9	141
279	Fluorescence Signal Amplification by Cation Exchange in Ionic Nanocrystals. Angewandte Chemie - International Edition, 2009, 48, 1588-1591.	13.8	60
280	Silver decorated \hat{I}^3 -manganese dioxide nanorods for alkaline battery cathode. Journal of Power Sources, 2009, 186, 532-538.	7.8	18
281	Towards functional nanostructures: Ionic self-assembly of polyoxometalates and surfactants. Current Opinion in Colloid and Interface Science, 2009, 14, 62-70.	7.4	56
282	A Self-Templated Route to Hollow Silica Microspheres. Journal of Physical Chemistry C, 2009, 113, 3168-3175.	3.1	243
283	Formation of Hollow Silica Colloids through a Spontaneous Dissolution–Regrowth Process. Angewandte Chemie - International Edition, 2008, 47, 5806-5811.	13.8	305
284	Coreâ€"Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell: Controllable Reactivity, High Stability, and Magnetic Recyclability. Angewandte Chemie - International Edition, 2008, 47, 8924-8928.	13.8	444
285	A Blown Film Process to Diskâ€6haped Polymer Ellipsoids. Advanced Materials, 2008, 20, 4599-4602.	21.0	44
286	Size-controlled synthesis of highly water-soluble silver nanocrystals. Journal of Solid State Chemistry, 2008, 181, 1524-1529.	2.9	43
287	Permeable Silica Shell through Surface-Protected Etching. Nano Letters, 2008, 8, 2867-2871.	9.1	561
288	TiO2 nanoparticles as a soft X-ray molecular probe. Chemical Communications, 2008, , 2471.	4.1	35

#	Article	IF	Citations
289	Self-Assembly and Field-Responsive Optical Diffractions of Superparamagnetic Colloids. Langmuir, 2008, 24, 3671-3680.	3.5	133
290	Multifunctional Nanowire Bioscaffolds on Titanium. Chemistry of Materials, 2007, 19, 4454-4459.	6.7	102
291	Kinetically Probing Site-Specific Heterogeneous Nucleation and Hierarchical Growth of Nanobranches. Journal of Physical Chemistry C, 2007, 111, 13691-13695.	3.1	22
292	Future Approaches of Nanomedicine in Clinical Science. Medical Clinics of North America, 2007, 91, 963-1016.	2.5	19
293	A Self-Templated Approach to TiO2 Microcapsules. Nano Letters, 2007, 7, 1832-1836.	9.1	135
294	A General Approach for Transferring Hydrophobic Nanocrystals into Water. Nano Letters, 2007, 7, 3203-3207.	9.1	348
295	Superparamagnetic Composite Colloids with Anisotropic Structures. Journal of the American Chemical Society, 2007, 129, 8974-8975.	13.7	224
296	Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites. Journal of the American Chemical Society, 2006, 128, 10960-10968.	13.7	360
297	Multifunctional, Catalytic Nanowire Membranes and the Membrane-Based 3D Devices. Journal of Physical Chemistry B, 2006, 110, 16819-16822.	2.6	70
298	Biocompatible nanofiber scaffolds on metal for controlled release and cell colonization. Nanomedicine: Nanotechnology, Biology, and Medicine, 2006, 2, 248-252.	3.3	22
299	Design and hierarchical synthesis of branched heteromicrostructures. Smart Materials and Structures, 2006, 15, N46-N50.	3.5	11
300	Highly Photoluminescent Polyoxometaloeuropate-Surfactant Complexes by Ionic Self-Assembly. Chemistry - A European Journal, 2005, 11, 1001-1009.	3.3	159
301	Evaluation of photochromic properties in heteropolyoxometallate-based inorganic polymeric thin films. Materials Chemistry and Physics, 2003, 77, 294-298.	4.0	23
302	Preparation of Au nanoparticles in the presence of low generational poly(amidoamine) dendrimer with surface hydroxyl groups. Materials Chemistry and Physics, 2003, 81, 160-165.	4.0	47
303	Hyperbranched poly(amine-ester) templates for the synthesis of Au nanoparticles. Materials Chemistry and Physics, 2003, 82, 812-817.	4.0	26
304	Photochromic polyoxotungstoeuropate K12 [EuP5W30O110]/polyvinylpyrrolidone nanocomposite films. Journal of Solid State Chemistry, 2003, 172, 458-463.	2.9	43
305	Highly ordered photoluminescent self-assembled films based on polyoxotungstoeuropate complex Na9[EuW10O36]Electronic supplementary information (ESI) available: IR, absorption and emission spectra, XRD pattern and SEM image of EuW10–C16TA film. See www.rsc.org/suppdata/jm/b2/b210965d/. lournal of Materials Chemistry, 2003, 13, 580-584.	6.7	41
306	Synthesis of hyperbranched poly(amine–ester)-protected noble metal nanoparticles in aqueous solution. Journal of Materials Research, 2003, 18, 1392-1398.	2.6	8

TIE-RUI ZHANG

#	Article	IF	CITATION
307	Ultrasound-induced change of microstructure and photochromic properties of polyacrylamide thin films containing a polyoxometalate. Journal of Materials Research, 2003, 18, 709-713.	2.6	9
308	Self-assembled organic–inorganic composite superlattice thin films incorporating photo- and electro-chemically active phosphomolybdate anion. Journal of Materials Chemistry, 2002, 12, 1453-1458.	6.7	38
309	Thermochromic Organoaminomodified Silica Composite Films Containing Phosphomolybdic Acid. Journal of Solid State Chemistry, 2002, 166, 259-263.	2.9	25
310	Multilayer films of cationic surfactants incorporating polyoxometalate on electrodes. Journal of Solid State Electrochemistry, 2002, 7, 25-29.	2.5	12