List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6196812/publications.pdf Version: 2024-02-01

ANNA ROCIANS

#	Article	IF	CITATIONS
1	The Choice of Rhodium Catalysts in [2+2+2] Cycloaddition Reaction: A Personal Account. Molecules, 2022, 27, 1332.	3.8	9
2	Highly Selective Synthesis of Seven-Membered Azaspiro Compounds by a Rh(I)-Catalyzed Cycloisomerization/Diels–Alder Cascade of 1,5-Bisallenes. Journal of Organic Chemistry, 2022, 87, 5279-5286.	3.2	7
3	Mechanistic Studies of Transition-Metal-Catalyzed [2 + 2 + 2] Cycloaddition Reactions. Chemical Reviews, 2021, 121, 1894-1979.	47.7	125
4	Synthesis of Fused Dihydroazepine Derivatives of Fullerenes by a Rh atalyzed Cascade Process. Advanced Synthesis and Catalysis, 2021, 363, 3835-3844.	4.3	8
5	(Invited) Preparation of Open-Cage Fullerene Derivatives By Rhodium(I)-Catalyzed [2+2+2] Cycloaddition of Diynes and C60: Synthesis, Computational Studies and Application in Perovskite Solar Cells. ECS Meeting Abstracts, 2020, MA2020-01, 786-786.	0.0	0
6	A Rh-Catalyzed Cycloisomerization/Diels–Alder Cascade Reaction of 1,5-Bisallenes for the Synthesis of Polycyclic Heterocycles. Organic Letters, 2019, 21, 6608-6613.	4.6	18
7	Examining the Factors That Govern the Regioselectivity in Rhodium-Catalyzed Alkyne Cyclotrimerization. Organometallics, 2019, 38, 2853-2862.	2.3	34
8	Enhanced Open-Circuit Voltage in Perovskite Solar Cells with Open-Cage [60]Fullerene Derivatives as Electron-Transporting Materials. Materials, 2019, 12, 1314.	2.9	13
9	Expeditious Preparation of Open-Cage Fullerenes by Rhodium(I)-Catalyzed [2+2+2] Cycloaddition of Diynes and C60 : An Experimental and Theoretical Study. Chemistry - A European Journal, 2018, 24, 10561-10561.	3.3	0
10	Expeditious Preparation of Open age Fullerenes by Rhodium(I) atalyzed [2+2+2] Cycloaddition of Diynes and C ₆₀ : An Experimental and Theoretical Study. Chemistry - A European Journal, 2018, 24, 10653-10661.	3.3	28
11	Chiral Induction in [2+2+2] Cycloaddition Reactions. Asian Journal of Organic Chemistry, 2018, 7, 1706-1718.	2.7	40
12	Chiral Induction in Intramolecular Rhodium atalyzed [2+2+2] Cycloadditions of Optically Active Allene–ene/yne–allene Substrates. Advanced Synthesis and Catalysis, 2017, 359, 506-512.	4.3	11
13	A Computational Study of the Intermolecular [2+2+2] Cycloaddition of Acetylene and C ₆₀ Catalyzed by Wilkinson's Catalyst. Chemistry - A European Journal, 2017, 23, 15067-15072.	3.3	11
14	Rhodium atalyzed [2+2+2] Cycloaddition Reactions of Linear Allene–Ene–Ynes to afford Fused Tricyclic Scaffolds: Insights into the Mechanism. Chemistry - A European Journal, 2017, 23, 14889-14899.	3.3	22
15	Unusual reactivity of rhodium carbenes with allenes: an efficient asymmetric synthesis of methylenetetrahydropyran scaffolds. Chemical Communications, 2017, 53, 9922-9925.	4.1	15
16	Lanthanides-pybox: An Excellent Combination for Highly Enantioselective Electrophilic α-Amination of Acyclic β-Keto Esters. Isolation of Ternary Pybox/Ln/l²-Keto Ester Complexes. ChemistrySelect, 2016, 1, 4305-4312.	1.5	8
17	An Enantioselective Cascade Cyclopropanation Reaction Catalyzed by Rhodium(I): Asymmetric Synthesis of Vinylcyclopropanes. Advanced Synthesis and Catalysis, 2016, 358, 3512-3516.	4.3	21
18	Rhodium atalyzed [2+2+2] Cycloadditions of Diynes with Morita–Baylis–Hillman Adducts: A Stereoselective Entry to Densely Functionalized Cyclohexadiene Scaffolds. Advanced Synthesis and Catalysis, 2016, 358, 1848-1853.	4.3	8

#	Article	IF	CITATIONS
19	Allenes, versatile unsaturated motifs in transition-metal-catalysed [2+2+2] cycloaddition reactions. Chemical Society Reviews, 2016, 45, 2010-2023.	38.1	111
20	Enantioselective Rhodium(I) Donor Carbenoidâ€Mediated Cascade Triggered by a Baseâ€Free Decomposition of Arylsulfonyl Hydrazones. Chemistry - A European Journal, 2015, 21, 16240-16245.	3.3	37
21	Highly Enantioselective (â^')-Sparteine-Mediated Lateral Metalation-Functionalization of Remote Silyl Protected <i>ortho</i> -Ethyl <i>N</i> , <i>N</i> -Dialkyl Aryl <i>O</i> -Carbamates. Journal of Organic Chemistry, 2015, 80, 3368-3386.	3.2	12
22	Dehydrogenative [2 + 2 + 2] Cycloaddition of Cyano-yne-allene Substrates: Convenient Access to 2,6-Naphthyridine Scaffolds. Organic Letters, 2015, 17, 2882-2885.	4.6	39
23	Computational insight into Wilkinson's complex catalyzed [2Â+Â2Â+Â2] cycloaddition mechanism leading to pyridine formation. Journal of Organometallic Chemistry, 2014, 768, 15-22.	1.8	15
24	A new mild synthetic route to N-arylated pyridazinones from aryldiazonium salts. Chemical Communications, 2014, 50, 8073-8076.	4.1	6
25	Rhodiumâ€NHC Hybrid Silica Materials as Recyclable Catalysts for [2+2+2] Cycloaddition Reactions of Alkynes. European Journal of Organic Chemistry, 2014, 2014, 6242-6251.	2.4	19
26	A simple catalytic system based on PdCl2(CH3CN)2 in water forÂcross-coupling reactions using diazonium salts. Tetrahedron, 2013, 69, 9761-9765.	1.9	24
27	Nickel(0) Complexes of Acyclic Polyunsaturated Aza Ligands. Organometallics, 2013, 32, 1710-1720.	2.3	5
28	Understanding Electronic Ligand Perturbation over Successive Metalâ€Based Redox Potentials in Mononuclear Ruthenium–Aqua Complexes. ChemPlusChem, 2013, 78, 235-243.	2.8	17
29	Dendritic phosphoramidite ligands for Rh-catalyzed [2+2+2] cycloaddition reactions: unprecedented enhancement of enantiodiscrimination. Chemical Communications, 2012, 48, 9248.	4.1	45
30	Nickel(0) Complexes of Polyunsaturated Azamacrocyclic Ligands. Organometallics, 2012, 31, 1983-1990.	2.3	9
31	Rhodium(I)-Catalyzed [2 + 2 + 2] Cycloaddition Reactions of Triacetylenic 15-Membered Aza Macrocycles: A Comparative Structural Study. Organometallics, 2012, 31, 318-326.	2.3	12
32	Direct Detection of Key Intermediates in Rhodium(I) atalyzed [2+2+2] Cycloadditions of Alkynes by ESIâ€MS. Chemistry - A European Journal, 2012, 18, 13097-13107.	3.3	37
33	Titelbild: P-Stereogenic Secondary Iminophosphorane Ligands and Their Rhodium(I) Complexes: Taking Advantage of NH/PH Tautomerism (Angew. Chem. 28/2012). Angewandte Chemie, 2012, 124, 6901-6901.	2.0	1
34	Pâ€Stereogenic Secondary Iminophosphorane Ligands and Their Rhodium(I) Complexes: Taking Advantage of NH/PH Tautomerism. Angewandte Chemie - International Edition, 2012, 51, 6951-6955.	13.8	46
35	RhCl(PPh ₃) ₃ -Catalyzed Intramolecular Cycloaddition of Enediynes: The Nature of the Tether and Substituents Controls the Reaction Mechanism. Organometallics, 2011, 30, 3151-3159.	2.3	22
36	Fluorous aryl compounds by Matsuda–Heck reaction. Tetrahedron, 2011, 67, 8659-8664.	1.9	18

#	Article	IF	CITATIONS
37	Functionalization of the 3â€Position of Thiophene and Benzo[<i>b</i>]thiophene Moieties by Palladiumâ€Catalyzed CC Bond Forming Reactions using Diazonium Salts. Advanced Synthesis and Catalysis, 2011, 353, 2003-2012.	4.3	25
38	Intramolecular [2+2+2] Cycloaddition Reactions of Yneâ€eneâ€yne and Yneâ€yneâ€ene Enediynes Catalysed by Rh ^I : Experimental and Theoretical Mechanistic Studies. Chemistry - A European Journal, 2011, 17, 14493-14507.	3.3	32
39	Chiral N-phosphino sulfinamide ligands in rhodium(I)-catalyzed [2+2+2] cycloaddition reactions. Tetrahedron, 2010, 66, 9032-9040.	1.9	41
40	Microwaveâ€Enhanced Rhodiumâ€Catalyzed [2+2+2] Cycloaddition Reactions To Afford Highly Functionalized Pyridines and Bipyridines. European Journal of Organic Chemistry, 2010, 2010, 3407-3415.	2.4	34
41	[2+2+2] Cycloaddition Reactions of Macrocyclic Systems Catalyzed by Transition Metals. A Review. Molecules, 2010, 15, 9230-9251.	3.8	61
42	Density Functional Study of the [2+2+2] Cyclotrimerization of Acetylene Catalyzed by Wilkinson's Catalyst, RhCl(PPh ₃) ₃ . Organometallics, 2010, 29, 562-569.	2.3	68
43	Ene reactions between two alkynes? Doors open to thermally induced cycloisomerization of macrocyclic triynes and enediynes. Chemical Communications, 2010, 46, 2944.	4.1	23
44	Rhodium N-Heterocyclic Carbene Complexes as Effective Catalysts for [2+2+2]-Cycloaddition Reactions. Synlett, 2009, 2009, 2844-2848.	1.8	5
45	Rhodium(I) atalysed Intramolecular [2+2+2] Cyclotrimerisations of 15â€, 20―and 25â€Membered Azamacrocycles: Experimental and Theoretical Mechanistic Studies. Chemistry - A European Journal, 2009, 15, 5289-5300.	3.3	49
46	Rates and Mechanism of Rhodium-Catalyzed [2+2+2] Cycloaddition of Bisalkynes and a Monoalkyne. Organometallics, 2009, 28, 6036-6043.	2.3	28
47	Synthesis of non-proteinogenic phenylalanine derivatives by rhodium-catalyzed [2+2+2] cycloaddition reactions. Organic and Biomolecular Chemistry, 2009, 7, 5020.	2.8	16
48	Synthesis and characterization of novel homo- and heterobimetallic palladium(0) and platinum(0) complexes of olefinic bismacrocyclic ligands. Arkivoc, 2009, 2010, 203-215.	0.5	0
49	Selective Pd(II) and Pt(IV) sorption using novel polymers containing azamacrocycle functional groups. Reactive and Functional Polymers, 2008, 68, 1088-1096.	4.1	16
50	Heck-type reactions of allylic alcohols. Journal of Molecular Catalysis A, 2008, 283, 140-145.	4.8	22
51	Fused tetracycles with a benzene or cyclohexadiene core: [2 + 2 + 2] cycloadditions on macrocyclic systems. Chemical Communications, 2008, , 4339.	4.1	31
52	Structural Differences between Open-Chain and Macrocyclic Triene Ligands for Palladium(0): Influence on the Stability and Catalytical Properties. Organometallics, 2008, 27, 5768-5776.	2.3	7
53	Highly Enantioselective Electrophilic Amination and Michael Addition of Cyclic β-Ketoesters Induced by Lanthanides and (S,S)-ip-pybox: The Mechanism⊥. Journal of Organic Chemistry, 2007, 72, 2077-2087.	3.2	94
54	Substitution of allylic acetates with sodium para-toluenesulfinate in aqueous media using allylpalladium chloride dimer and a water-soluble ligand as the catalytic system; electrospray ionisation mass spectrometry analysis. New Journal of Chemistry, 2007. 31. 121-126.	2.8	20

#	Article	IF	CITATIONS
55	Recoverable Homogeneous Palladium(0) Catalyst for Cross-Coupling Reactions of Arenediazonium Salts with Potassium Organotrifluoroborates: Detection of Catalytic Intermediates by Electrospray Ionization Mass Spectrometry. European Journal of Organic Chemistry, 2007, 2007, 158-166.	2.4	52
56	Palladium and rhodium-catalyzed intramolecular [2+2+2] cycloisomerizations in molten tetrabutylammonium bromide. Tetrahedron Letters, 2007, 48, 6425-6428.	1.4	26
57	Synthesis and structure of a chiral dinuclear palladium(0) complex with a 30-membered hexaolefinic macrocyclic ligand. Journal of Organometallic Chemistry, 2007, 692, 2997-3004.	1.8	2
58	Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions. Chemical Reviews, 2006, 106, 4622-4643.	47.7	708
59	Can the Disproportion of Oxidation State III Be Favored in Rullâ^'OH2/RulVO Systems?. Journal of the American Chemical Society, 2006, 128, 5306-5307.	13.7	87
60	Chiral and Stable Palladium(0) Complexes of Polyunsaturated Aza-macrocyclic Ligands:  Synthesis and Structural Analysis. Organometallics, 2006, 25, 5612-5620.	2.3	14
61	New applications of azamacrocyclic ligands in ion recognition, transport and preconcentration of palladium. Analytica Chimica Acta, 2006, 560, 77-83.	5.4	19
62	New Unsaturated Azamacrocyclic Enediynes: Synthesis, Structural Analysis and Thermal Behavior. Synlett, 2006, 2006, 3041-3044.	1.8	0
63	IFSERF, an isotope-filtered SERF experiment for the precise measurement of proton–proton coupling constants between chemically equivalent protons. Journal of Magnetic Resonance, 2005, 173, 305-309.	2.1	10
64	The Heck-type arylation of allylic alcohols with arenediazonium salts. Journal of Organometallic Chemistry, 2005, 690, 3822-3826.	1.8	46
65	Preparation of 15-membered unsaturated N–H containing azamacrocycles and their differential coordination with Pd(0) and Pd(II). Tetrahedron, 2005, 61, 10105-10112.	1.9	3
66	Measurement of coupling constants in symmetrical spin systems using a full multiple-step cross-polarization-driven NMR pulse scheme. Magnetic Resonance in Chemistry, 2005, 43, 979-984.	1.9	4
67	Structural Analysis of Chiral Complexes of Palladium(0) with 15-Membered Triolefinic Macrocyclic Ligands. Chemistry - A European Journal, 2005, 11, 2689-2697.	3.3	13
68	Ionic and Covalent Copper(II)-Based Catalysts for Michael Additions. The Mechanism ChemInform, 2005, 36, no.	0.0	0
69	The Heck-Type Arylation of Allylic Alcohols with Arenediazonium Salts ChemInform, 2005, 36, no.	0.0	0
70	Transition Metal-Mediated Intramolecular [2+2+2] Cycloisomerizations of Cyclic Triynes and Enediynes. Journal of Organic Chemistry, 2005, 70, 2033-2041.	3.2	55
71	ESI-mass spectrometry as a tool for investigating the mechanistic role of a 15-membered triolefinic macrocyclic palladium(0) complex in the Heck reaction. Arkivoc, 2005, 2005, 51-62.	0.5	19
72	Syntheses, Structures and Redox Properties of New Macrocyclic Triazatriolefinic Pd0 Complexes and Their Polypyrrole Modified Electrodesâ'' Application to Heterogeneous Catalytic Suzuki Cross-Coupling Reactions. European Journal of Inorganic Chemistry, 2004, 2004, 1601-1610.	2.0	12

#	Article	IF	CITATIONS
73	Synthesis of Nitrogen-Containing 15-Membered Triacetylenic Macrocycles. Stable Complex with Palladium(0) ChemInform, 2004, 35, no.	0.0	0
74	15-Membered Triolefinic Macrocycles, Their Coordination Chemistry with Transition Metals, and the Catalytic Properties of Their Palladium Metal Complexes ChemInform, 2004, 35, no.	0.0	0
75	The palladium(0) Suzuki cross-coupling reaction as the key step in the synthesis of aporphinoids. Tetrahedron, 2004, 60, 5725-5735.	1.9	19
76	Organometallic chemistry of 15-membered tri-olefinic macrocycles: catalysis by palladium(0) complexes in carbon–carbon bond-forming reactions. Journal of Organometallic Chemistry, 2004, 689, 3669-3684.	1.8	49
77	Novel Homo- and Heterobimetallic Palladium(0) and Platinum(0) Complexes of Olefinic Mono-, Bis-, and Tris-macrocyclic Ligands. Organometallics, 2004, 23, 2533-2540.	2.3	19
78	Ionic and Covalent Copper(II)-Based Catalysts for Michael Additions. The Mechanismâ€. Journal of Organic Chemistry, 2004, 69, 6834-6842.	3.2	48
79	Synthesis of Nitrogen-Containing 15-Membered Triacetylenic Macrocycles. Stable Complex with Palladium(0). Organometallics, 2004, 23, 2762-2767.	2.3	37
80	Allylic Substitution Mediated by Water and Palladium:Â Unusual Role of a Palladium(II) Catalyst and ESI-MS Analysis. Organometallics, 2004, 23, 4796-4799.	2.3	44
81	15-Membered triolefinic macrocycles, their coordination chemistry with transition metals, and the catalytic properties of their palladium metal complexes. A review Arkivoc, 2004, 2004, 109-129.	0.5	28
82	15-Membered Triolefinic Macrocycles â^' Catalytic Role of (E,E,E)-1,6,11-Tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene Complexes of Palladium(0) in the Presence of Phosphanes. European Journal of Organic Chemistry, 2003, 2003, 274-283.	2.4	25
83	First Heck Reaction with Arenediazonium Cations with Recovery of Pd-Triolefinic Macrocyclic Catalyst ChemInform, 2003, 34, no.	0.0	0
84	First Heck Reaction with Arenediazonium Cations with Recovery of Pd-Triolefinic Macrocyclic Catalyst. Organic Letters, 2003, 5, 1559-1561.	4.6	107
85	Preparation of Aniline Derivatives: An Advanced Undergraduate Laboratory Experiment Exploring Catalytic and Stoichiometric Reaction Methodologies. Journal of Chemical Education, 2002, 79, 731.	2.3	3
86	Synthesis, catalytic activity and redox properties of palladium(0) complexes with 15-membered triolefinic macrocyclic ligands containing one, two or three ferrocenyl groups. Tetrahedron Letters, 2002, 43, 1425-1428.	1.4	25
87	Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to the structure determination of medium and large macrocycles formed by palladium(0)-catalyzed allylation of arenesulfonamides, sulfamide, and cyanamide. , 1999, 13, 2359-2365.		3
88	Electrospray Ionization Mass Spectrometry Detection of Intermediates in the Palladium-Catalyzed Oxidative Self-Coupling of Areneboronic Acids. Journal of Organic Chemistry, 1999, 64, 3592-3594.	3.2	100
89	Palladium(0)-catalyzed allylation of highly acidic and non-nucleophilic arenesulfonamides, sulfamide, and cyanamide. I Tetrahedron, 1998, 54, 14869-14884.	1.9	40
90	Palladium(0)-catalyzed allylation of highly acidic and non-nucleophilic arenesulfonamides, sulfamide, and cyanamide. II. Formation of medium and large heterocycles. Tetrahedron, 1998, 54, 14885-14904.	1.9	33

#	Article	IF	CITATIONS
91	Stereospecific Preparation of (E) and (Z)-3,3-Diarylacrylonitriles by Heck Reaction. Synlett, 1997, 1997, 1157-1158.	1.8	30
92	Direct and Highly Enantioselective Synthesis of Ferrocenes with Planar Chirality by (â~)-Sparteine-Mediated Lithiation. Journal of the American Chemical Society, 1996, 118, 685-686.	13.7	264
93	Ethyl N-(diphenylmethylene)glycinate as anionic glycine equivalent. Monoalkylation, dialkylation and Michael additions under solid-liquid phase-transfer catalysis. Tetrahedron, 1996, 52, 8365-8386.	1.9	33
94	Ethyl <i>N</i> â€(diphenylmethylene)glycinate as anionic glycine equivalent transition metal mediated preparation of bicyclic and tricyclic α,l±â€disubstituted αâ€amino acids and derivatives. Liebigs Annalen, 1995, 1995, 1807-1814.	0.8	11
95	Improved Preparation of Diethyl Bromomethylphosphonate and Diiodomethane-Catalyzed Triethylphosphite Michaelis-Arbuzov Isomerization. Synthetic Communications, 1995, 25, 191-194.	2.1	10
96	Synthesis of α-substituted and α,α-disubstituted α-amino acids by controlled mono- and dialkylation of ethyl N-diphenylmethyleneglycinate. Tetrahedron Letters, 1993, 34, 8535-8538.	1.4	21
97	Diels-Alder Reactions of 1,1-Disubstituted 3,4-Dimethylene-cyclopentanes. Preparation of Indanes and Diazaindanes. Synthetic Communications, 1993, 23, 601-612.	2.1	9
98	Solid phase conformational analysis of a 13-membered heterocycle: 8,13-Dioxo-1,4,7-trioxacyclotridecane (diethylene glycol cyclic adipate). Zeitschrift Für Kristallographie, 1992, 202, 109-114.	1.1	0
99	Preparation of 3-Pyrrolidone and 4-Perhydroazepinone. Synthetic Communications, 1992, 22, 1249-1258.	2.1	22
100	A Rh(I) atalyzed Cascade Cyclization of 1,5â€Bisallenes and Alkynes for the Formation of cisâ€3,4â€Arylvinyl Pyrrolidines and Cyclopentanes. Advanced Synthesis and Catalysis, 0, , .	4.3	3
101	Cyclotrimerization takes orders from rhodium. , 0, , .		0