Jerry W Jenkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6196727/publications.pdf

Version: 2024-02-01

48315 41344 16,207 87 49 88 citations h-index g-index papers 105 105 105 17814 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492, 423-427.	27.8	1,204
2	A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.	21.4	1,159
3	The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45, 487-494.	21.4	1,031
4	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
5	Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012, 30, 555-561.	17.5	864
6	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	27.8	849
7	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	27.8	725
8	Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32, 656-662.	17.5	572
9	The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530, 331-335.	27.8	460
10	The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 2019, 51, 877-884.	21.4	439
11	The <i>Sorghum bicolor</i> reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant Journal, 2018, 93, 338-354.	5.7	431
12	The <i>Physcomitrella patens</i> chromosomeâ€scale assembly reveals moss genome structure and evolution. Plant Journal, 2018, 93, 515-533.	5.7	406
13	The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics, 2013, 45, 831-835.	21.4	374
14	The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics, 2017, 18, 225.	2.8	342
15	The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588, 284-289.	27.8	314
16	A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nature Communications, 2018, 9, 2638.	12.8	299
17	Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen <i>Phytophthora capsici</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1350-1360.	2.6	264
18	A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 2015, 16, 26.	8.8	256

#	Article	IF	Citations
19	Deeply conserved synteny resolves early events in vertebrate evolution. Nature Ecology and Evolution, 2020, 4, 820-830.	7.8	250
20	Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics, 2020, 52, 525-533.	21.4	249
21	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	7.1	233
22	The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology, 2013, 14, r53.	8.8	225
23	Hemichordate genomes and deuterostome origins. Nature, 2015, 527, 459-465.	27.8	217
24	A roadmap for research on crassulacean acid metabolism (<scp>CAM</scp>) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytologist, 2015, 207, 491-504.	7.3	211
25	The Reference Genome of the Halophytic Plant Eutrema salsugineum. Frontiers in Plant Science, 2013, 4, 46.	3.6	198
26	Fine-scale variation in meiotic recombination in <i>Mimulus</i> inferred from population shotgun sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19478-19482.	7.1	190
27	Long-read sequence assembly: a technical evaluation in barley. Plant Cell, 2021, 33, 1888-1906.	6.6	180
28	The Kalancho \tilde{A} « genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	12.8	159
29	SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean. G3: Genes, Genomes, Genetics, 2015, 5, 2285-2290.	1.8	147
30	Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature, 2021, 590, 438-444.	27.8	144
31	A 2-D Microcantilever Array for Multiplexed Biomolecular Analysis. Journal of Microelectromechanical Systems, 2004, 13, 290-299.	2.5	138
32	Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17, 33.	2.8	137
33	The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. ELife, 2018, 7, .	6.0	120
34	Construction and comparison of three referenceâ€quality genome assemblies for soybean. Plant Journal, 2019, 100, 1066-1082.	5.7	113
35	Automated refinement and inference of analytical models for metabolic networks. Physical Biology, 2011, 8, 055011.	1.8	108
36	A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nature Biotechnology, 2020, 38, 1203-1210.	17.5	103

#	Article	IF	CITATIONS
37	Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?. Scientific Reports, 2015, 5, 10134.	3.3	102
38	The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nature Communications, 2018, 9, 5213.	12.8	101
39	Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE (ANR), a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell, 2016, 28, tpc.00091.2016.	6.6	98
40	Young inversion with multiple linked QTLs under selection in a hybrid zone. Nature Ecology and Evolution, 2017, 1, 119.	7.8	94
41	Highâ€resolution genetic maps of <i><scp>E</scp>ucalyptus</i> improve <i>EucalyptusÂgrandis</i> genome assembly. New Phytologist, 2015, 206, 1283-1296.	7.3	90
42	Draft Nuclear Genome Sequence of the Halophilic and Beta-Carotene-Accumulating Green Alga <i>Dunaliella salina </i> Strain CCAP19/18. Genome Announcements, 2017, 5, .	0.8	83
43	QTL $ ilde{A}$ — environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12933-12941.	7.1	75
44	A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biology, 2020, 21, 38.	8.8	74
45	A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics, 2019, 20, 420.	2.8	73
46	Extracting kinetic rate constants from surface plasmon resonance array systems. Analytical Biochemistry, 2008, 373, 112-120.	2.4	71
47	A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biology, 2020, 21, 259.	8.8	68
48	Gradual polyploid genome evolution revealed by pan-genomic analysis of Brachypodium hybridum and its diploid progenitors. Nature Communications, 2020, 11, 3670.	12.8	67
49	Sparse panicle1 is required for inflorescence development in Setaria viridis and maize. Nature Plants, 2017, 3, 17054.	9.3	63
50	Characterization of a large sex determination region in Salix purpurea L. (Salicaceae). Molecular Genetics and Genomics, 2018, 293, 1437-1452.	2.1	61
51	Genome sequence of the model rice variety KitaakeX. BMC Genomics, 2019, 20, 905.	2.8	59
52	Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. Science Advances, 2021, 7, .	10.3	53
53	Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C ₄ grass. Genome Research, 2016, 26, 510-518.	5 . 5	52
54	A Genome-Wide Survey of Switchgrass Genome Structure and Organization. PLoS ONE, 2012, 7, e33892.	2.5	50

#	Article	IF	CITATIONS
55	Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nature Communications, 2021, 12, 4125.	12.8	49
56	Optimizing genomic selection for blight resistance in American chestnut backcross populations: A tradeâ€off with American chestnut ancestry implies resistance is polygenic. Evolutionary Applications, 2020, 13, 31-47.	3.1	48
57	Diversity and population structure of northern switchgrass as revealed through exome capture sequencing. Plant Journal, 2015, 84, 800-815.	5.7	47
58	Identical Genomic Organization of Two Hemichordate Hox Clusters. Current Biology, 2012, 22, 2053-2058.	3.9	43
59	A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Developmental Biology, 2019, 452, 8-20.	2.0	43
60	The tepary bean genome provides insight into evolution and domestication under heat stress. Nature Communications, 2021, 12, 2638.	12.8	43
61	Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons. NeuroToxicology, 2010, 31, 518-523.	3.0	42
62	Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga Porphyra umbilicalis. PLoS ONE, 2016, 11, e0151883.	2.5	39
63	Extensive Genetic Diversity is Present within North American Switchgrass Germplasm. Plant Genome, 2018, 11, 170055.	2.8	35
64	Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2019, 132, 2325-2351.	3.6	30
65	Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass). F1000Research, 2021, 10, 289.	1.6	26
66	Mefloquine neurotoxicity is mediated by non-receptor tyrosine kinase. NeuroToxicology, 2011, 32, 578-585.	3.0	24
67	The Genetic Architecture of Shoot and Root Trait Divergence Between Mesic and Xeric Ecotypes of a Perennial Grass. Frontiers in Plant Science, 2019, 10, 366.	3.6	22
68	Draft Nuclear Genome Sequence of the Liquid Hydrocarbon–Accumulating Green Microalga <i>Botryococcus braunii</i> Race B (Showa). Genome Announcements, 2017, 5, .	0.8	21
69	Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Communications Biology, 2021, 4, 537.	4.4	21
70	Sequencing and Analysis of the Sex Determination Region of Populus trichocarpa. Genes, 2020, 11, 843.	2.4	19
71	Genomic adaptations of the green alga Dunaliella salina to life under high salinity. Algal Research, 2020, 50, 101990.	4.6	18
72	Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. Plant Physiology, 2022, 189, 516-526.	4.8	18

#	Article	IF	CITATIONS
73	Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass. BMC Genomics, 2016, 17, 892.	2.8	14
74	Genomic variation within the maize stiffâ€stalk heterotic germplasm pool. Plant Genome, 2021, 14, e20114.	2.8	14
75	Highâ€density linkage map reveals QTL underlying growth traits in AP13×VS16 biparental population of switchgrass. GCB Bioenergy, 2019, 11, 672-690.	5.6	13
76	Representing sex chromosomes in genome assemblies. Cell Genomics, 2022, 2, 100132.	6.5	13
77	Chemo-sensitivity and reliability of flagellar rotary motor in a MEMS microfluidic actuation system. Sensors and Actuators B: Chemical, 2006, 114, 229-238.	7.8	10
78	Targeted Switchgrass BAC Library Screening and Sequence Analysis Identifies Predicted Biomass and Stress Response-Related Genes. Bioenergy Research, 2016, 9, 109-122.	3.9	10
79	Population genomics and climate adaptation of a C4 perennial grass, Panicum hallii (Poaceae). BMC Genomics, 2018, 19, 792.	2.8	9
80	Chloroplast genome sequences of Carya illinoinensis from two distinct geographic populations. Tree Genetics and Genomes, 2020, 16, 1.	1.6	9
81	Highâ€Density Single Nucleotide Polymorphism Linkage Maps of Lowland Switchgrass using Genotypingâ€byâ€Sequencing. Plant Genome, 2015, 8, eplantgenome2014.10.0065.	2.8	8
82	Quantitative trait loci for cell wall composition traits measured using near-infrared spectroscopy in the model C4 perennial grass Panicum hallii. Biotechnology for Biofuels, 2018, 11, 25.	6.2	8
83	Simulation of intermediate order in polymeric glasses. Macromolecular Symposia, 1999, 146, 235-241.	0.7	6
84	The science and policy of critical loads of pollutant deposition to protect ecosystems in New York. Annals of the New York Academy of Sciences, 2014, 1313, 57-68.	3.8	6
85	A draft genome provides hypotheses on drought tolerance in a keystone plant species in Western North America threatened by climate change. Ecology and Evolution, 2021, 11, 15417-15429.	1.9	6
86	Genomeâ€wide quantitative trait loci detection for biofuel traits in switchgrass (<i>Panicum) Tj ETQq0 0 0 rgBT</i>	Oyerlock	10 ₃ Tf 50 222
87	Submonolayer measurements of adsorbed proteins in microfluidic channels. , 2006, , 257-274.		O