Remy Burcelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6196444/publications.pdf Version: 2024-02-01

REMY RUDCELIN

#	Article	IF	CITATIONS
1	Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target. Gut, 2022, 71, 807-821.	12.1	26
2	Gut microbiota dysbiosis of type 2 diabetic mice impairs the intestinal daily rhythms of GLP-1 sensitivity. Acta Diabetologica, 2022, 59, 243-258.	2.5	8
3	Implication des bactéries orales et intestinales dans le décours des maladies cardio-métaboliques et du diabÃïte de type 2. Medecine Des Maladies Metaboliques, 2022, , .	0.1	2
4	ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids. Molecular Metabolism, 2022, 59, 101454.	6.5	5
5	Endurance Training in Humans Modulates the Bacterial DNA Signature of Skeletal Muscle. Biomedicines, 2022, 10, 64.	3.2	3
6	Liraglutide targets the gut microbiota and the intestinal immune system to regulate insulin secretion. Acta Diabetologica, 2021, 58, 881-897.	2.5	18
7	CX3CR1 regulates gut microbiota and metabolism. A risk factor of type 2 diabetes. Acta Diabetologica, 2021, 58, 1035-1049.	2.5	4
8	Obesity Drives an Oral Microbiota Signature of Female Patients with Periodontitis: A Pilot Study. Diagnostics, 2021, 11, 745.	2.6	7
9	lron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome, 2021, 9, 104.	11.1	70
10	Variabilité de la perception orosensorielle des lipides chez les sujets obèsesÂ: l'hypothèse du microbiote buccal. Cahiers De Nutrition Et De Dietetique, 2021, 56, 292-292.	0.3	0
11	Fatty taste variability in obese subjects: the oral microbiota hypothesis. OCL - Oilseeds and Fats, Crops and Lipids, 2020, 27, 38.	1.4	9
12	Identification of an oral microbiota signature associated with an impaired orosensory perception of lipids in insulin-resistant patients. Acta Diabetologica, 2020, 57, 1445-1451.	2.5	13
13	The APOA1bp–SREBF–NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clinical Nutrition, 2020, 39, 3408-3418.	5.0	7
14	Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Molecular Metabolism, 2020, 36, 100976.	6.5	46
15	Liver tissue microbiome in NAFLD: next step in understanding the gut–liver axis?. Gut, 2020, 69, 1373-1374.	12.1	27
16	The gut microbiota to the brain axis in the metabolic control. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 427-438.	5.7	33
17	Resveratrol-mediated glycemic regulation is blunted by curcumin and is associated to modulation of gut microbiota. Journal of Nutritional Biochemistry, 2019, 72, 108218.	4.2	28
18	Structure function relationships in three lipids A from the Ralstonia genus rising in obese patients. Biochimie, 2019, 159, 72-80.	2.6	13

#	Article	IF	CITATIONS
19	Getting to Know the Gut Microbial Diversity of Metropolitan Buenos Aires Inhabitants. Frontiers in Microbiology, 2019, 10, 965.	3.5	8
20	Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 449-459.	5.7	57
21	Consider the microbiome in the equation! They were here before usand hosted us!. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 383-385.	5.7	Ο
22	Obese Subjects With Specific Gustatory Papillae Microbiota and Salivary Cues Display an Impairment to Sense Lipids. Scientific Reports, 2018, 8, 6742.	3.3	32
23	Oral health and microbiota status in professional rugby players: A case-control study. Journal of Dentistry, 2018, 79, 53-60.	4.1	16
24	Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nature Medicine, 2018, 24, 1113-1120.	30.7	193
25	Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine, 2018, 24, 1070-1080.	30.7	465
26	Lixisenatide requires a functional gut-vagus nerve-brain axis to trigger insulin secretion in controls and type 2 diabetic mice. American Journal of Physiology - Renal Physiology, 2018, 315, G671-G684.	3.4	10
27	Periodontitis induced by <i>Porphyromonas gingivalis</i> drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut, 2017, 66, 872-885.	12.1	210
28	When gut fermentation controls satiety: A PYY story. Molecular Metabolism, 2017, 6, 10-11.	6.5	11
29	Associations between hepatic miRNA expression, liver triacylglycerols and gut microbiota during metabolic adaptation to high-fat diet in mice. Diabetologia, 2017, 60, 690-700.	6.3	52
30	A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metabolism, 2017, 25, 1075-1090.e5.	16.2	179
31	Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23, 850-858.	30.7	1,165
32	Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Molecular Systems Biology, 2017, 13, 921.	7.2	43
33	Corrupted adipose tissue endogenous myelopoiesis initiates diet-induced metabolic disease. ELife, 2017, 6, .	6.0	15
34	Comprehensive description of blood microbiome from healthy donors assessed by 16 <scp>S</scp> targeted metagenomic sequencing. Transfusion, 2016, 56, 1138-1147.	1.6	355
35	Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults—Randomized Controlled Trial. EBioMedicine, 2016, 13, 190-200. 	6.1	108
36	Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia. Molecular Metabolism, 2016, 5, 392-403.	6.5	50

#	Article	IF	CITATIONS
37	Gestational diabetes is associated with changes in placental microbiota and microbiome. Pediatric Research, 2016, 80, 777-784.	2.3	104
38	Periodontal dysbiosis linked to periodontitis is associated with cardiometabolic adaptation to high-fat diet in mice. American Journal of Physiology - Renal Physiology, 2016, 310, G1091-G1101.	3.4	20
39	Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology, 2016, 64, 2015-2027.	7.3	230
40	Gut microbiota and immune crosstalk in metabolic disease. Molecular Metabolism, 2016, 5, 771-781.	6.5	141
41	Gut Microbiota Cool-Down Burning Fat! The Immune Hypothesis. Trends in Endocrinology and Metabolism, 2016, 27, 67-68.	7.1	6
42	Defective <scp>NOD</scp> 2 peptidoglycan sensing promotes dietâ€induced inflammation, dysbiosis, and insulin resistance. EMBO Molecular Medicine, 2015, 7, 259-274.	6.9	160
43	The Characterization of Novel Tissue Microbiota Using an Optimized 16S Metagenomic Sequencing Pipeline. PLoS ONE, 2015, 10, e0142334.	2.5	155
44	Gut Microbiota Interacts With Brain Microstructure and Function. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4505-4513.	3.6	130
45	The Gut Microbiota Regulates Intestinal CD4ÂT Cells Expressing RORγt and Controls Metabolic Disease. Cell Metabolism, 2015, 22, 100-112.	16.2	248
46	Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective. Molecular and Integrative Toxicology, 2015, , 199-234.	0.5	7
47	Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice. Diabetology and Metabolic Syndrome, 2015, 7, 75.	2.7	49
48	Autonomic Diabetic Neuropathy Impairs Glucose and Dipeptidyl Peptidase 4 Inhibitor-Regulated Glucagon Concentration in Type 1 Diabetic Patients. Journal of Endocrinology and Metabolism, 2015, 5, 229-237.	0.4	3
49	Changes in Lipoprotein Kinetics Associated With Type 2 Diabetes Affect the Distribution of Lipopolysaccharides Among Lipoproteins. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1245-E1253.	3.6	38
50	Far from the Eyes, Close to the Heart: Dysbiosis of Gut Microbiota and Cardiovascular Consequences. Current Cardiology Reports, 2014, 16, 540.	2.9	81
51	A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia, 2013, 56, 2524-2537.	6.3	109
52	The gut microbiota profile is associated with insulin action in humans. Acta Diabetologica, 2013, 50, 753-761.	2.5	50
53	Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Molecular Metabolism, 2013, 2, 281-291.	6.5	84
54	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	4.4	112

#	Article	IF	CITATIONS
55	Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cellular Signalling, 2013, 25, 570-579.	3.6	54
56	Optimization of trans-Resveratrol bioavailability for human therapy. Biochimie, 2013, 95, 1233-1238.	2.6	79
57	Blood Microbiota Dysbiosis Is Associated with the Onset of Cardiovascular Events in a Large General Population: The D.E.S.I.R. Study. PLoS ONE, 2013, 8, e54461.	2.5	201
58	L'intestin métabolique : dualité fonctionnelle des incrétines et de la flore intestinale. Bulletin De L'Academie Nationale De Medecine, 2013, 197, 79-92.	0.0	0
59	Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut, 2012, 61, 543-553.	12.1	511
60	Intestinal MicrobiOMICS to Define Health and Disease in Human and Mice. Current Pharmaceutical Biotechnology, 2012, 13, 746-758.	1.6	34
61	Microbes On-Air. Journal of Clinical Gastroenterology, 2012, 46, S27-S28.	2.2	15
62	Regulation of Metabolism: A Cross Talk Between Gut Microbiota and Its Human Host. Physiology, 2012, 27, 300-307.	3.1	47
63	Immuno-microbiota cross and talk: The new paradigm of metabolic diseases. Seminars in Immunology, 2012, 24, 67-74.	5.6	126
64	High-Fat Diet Induces Periodontitis in Mice through Lipopolysaccharides (LPS) Receptor Signaling: Protective Action of Estrogens. PLoS ONE, 2012, 7, e48220.	2.5	67
65	Therapeutic Modulation of Microbiota-Host Metabolic Interactions. Science Translational Medicine, 2012, 4, 137rv6.	12.4	211
66	Host-Gut Microbiota Metabolic Interactions. Science, 2012, 336, 1262-1267.	12.6	3,693
67	Neuroprotective properties of GLP-1: theoretical and practical applications. Current Medical Research and Opinion, 2011, 27, 547-558.	1.9	125
68	Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control. PLoS ONE, 2011, 6, e20700.	2.5	124
69	Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetologica, 2011, 48, 257-273.	2.5	199
70	Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. Journal of Nutritional Biochemistry, 2011, 22, 53-59.	4.2	235
71	Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 75-77.	0.5	0
72	Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 2011, 3, 559-572.	6.9	694

#	Article	IF	CITATIONS
73	Physiological and Pharmacological Mechanisms through which the DPP-4 Inhibitor Sitagliptin Regulates Glycemia in Mice. Endocrinology, 2011, 152, 3018-3029.	2.8	134
74	Brain GLP-1 Signaling Regulates Femoral Artery Blood Flow and Insulin Sensitivity Through Hypothalamic PKC-δ. Diabetes, 2011, 60, 2245-2256.	0.6	37
75	CD14 Modulates Inflammation-Driven Insulin Resistance. Diabetes, 2011, 60, 2179-2186.	0.6	83
76	Lipid-Induced Peroxidation in the Intestine Is Involved in Glucose Homeostasis Imbalance in Mice. PLoS ONE, 2011, 6, e21184.	2.5	9
77	Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2010, 4, 75-77.	0.5	Ο
78	PPARÎ ³ Ligands Switched High Fat Diet-Induced Macrophage M2b Polarization toward M2a Thereby Improving Intestinal Candida Elimination. PLoS ONE, 2010, 5, e12828.	2.5	73
79	Les lipopolysaccharides bactériens et les maladies métaboliques. Cahiers De Nutrition Et De Dietetique, 2010, 45, 114-121.	0.3	Ο
80	The gut microbiota ecology: a new opportunity for the treatment of metabolic diseases ?. Frontiers in Bioscience - Landmark, 2009, 14, 5107.	3.0	52
81	A role for the gut-to-brain GLP-1-dependent axis in the control of metabolism. Current Opinion in Pharmacology, 2009, 9, 744-752.	3.5	47
82	Brain Glucagon-Like Peptide 1 Signaling Controls the Onset of High-Fat Diet-Induced Insulin Resistance and Reduces Energy Expenditure. Endocrinology, 2008, 149, 4768-4777.	2.8	89
83	Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing. Diabetes, 2008, 57, 2603-2612.	0.6	116
84	Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes, 2008, 57, 1470-1481.	0.6	3,897
85	Brain Glucagon-Like Peptide-1 Regulates Arterial Blood Flow, Heart Rate, and Insulin Sensitivity. Diabetes, 2008, 57, 2577-2587.	0.6	107
86	Energy intake is associated with endotoxemia in apparently healthy men. American Journal of Clinical Nutrition, 2008, 87, 1219-1223.	4.7	498
87	Central Insulin Regulates Heart Rate and Arterial Blood Flow. Diabetes, 2007, 56, 2872-2877.	0.6	44
88	Glucagon-Like Peptide-1 and Energy Homeostasis3. Journal of Nutrition, 2007, 137, 2534S-2538S.	2.9	47
89	Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 2007, 56, 1761-1772.	0.6	4,964
90	GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 2007, 276, 18-23.	3.2	86

#	Article	IF	CITATIONS
91	Improvement of Glucose Tolerance and Hepatic Insulin Sensitivity by Oligofructose Requires a Functional Glucagon-Like Peptide 1 Receptor. Diabetes, 2006, 55, 1484-1490.	0.6	365
92	The incretins: a link between nutrients and well-being. British Journal of Nutrition, 2005, 93, S147-S156.	2.3	67
93	Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. Journal of Clinical Investigation, 2005, 115, 3554-3563.	8.2	263
94	Impaired Glucose Homeostasis in Mice Lacking the α1b-Adrenergic Receptor Subtype. Journal of Biological Chemistry, 2004, 279, 1108-1115.	3.4	43
95	Partial Gene Deletion of Endothelial Nitric Oxide Synthase Predisposes to Exaggerated High-Fat DietInduced Insulin Resistance and Arterial Hypertension. Diabetes, 2004, 53, 2067-2072.	0.6	128
96	Transcript Profiling Suggests That Differential Metabolic Adaptation of Mice to a High Fat Diet Is Associated with Changes in Liver to Muscle Lipid Fluxes. Journal of Biological Chemistry, 2004, 279, 50743-50753.	3.4	77
97	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	8.2	50
98	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	8.2	31
99	Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E834-E842.	3.5	246
100	Increased insulin concentrations and glucose storage in neuropeptide Y Y1 receptor-deficient mice. Peptides, 2001, 22, 421-427.	2.4	56
101	Encapsulated, Genetically Engineered Cells, Secreting Glucagonâ€like Peptideâ€1 for the Treatment of Nonâ€insulinâ€dependent Diabetes Mellitus. Annals of the New York Academy of Sciences, 1999, 875, 277-285.	3.8	32