
Jiansheng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6196039/publications.pdf Version: 2024-02-01

IMANSHENC W/U

#	Article	IF	CITATIONS
1	Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with High apacity. Advanced Energy Materials, 2015, 5, 1402189.	19.5	253
2	Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angewandte Chemie - International Edition, 2015, 54, 7354-7358.	13.8	234
3	Polypyrrole nanotube film for flexible thermoelectric application. Synthetic Metals, 2014, 196, 173-177.	3.9	165
4	Inorganic–organic hybrid polymer with multiple redox for high-density data storage. Chemical Science, 2014, 5, 3404-3408.	7.4	164
5	Conductive MOF-Modified Separator for Mitigating the Shuttle Effect of Lithium–Sulfur Battery through a Filtration Method. ACS Applied Materials & Interfaces, 2019, 11, 11459-11465.	8.0	141
6	Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics, 2009, 25, 30-35.	4.1	137
7	Employing a Flexible and Lowâ€Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells. Small, 2015, 11, 3440-3443.	10.0	136
8	Designing MOFs-Derived FeS ₂ @Carbon Composites for High-Rate Sodium Ion Storage with Capacitive Contributions. ACS Applied Materials & Interfaces, 2018, 10, 33097-33104.	8.0	126
9	Repurposed Leather with Sensing Capabilities for Multifunctional Electronic Skin. Advanced Science, 2019, 6, 1801283.	11.2	119
10	Rhodamineâ€Modified Upconversion Nanophosphors for Ratiometric Detection of Hypochlorous Acid in Aqueous Solution and Living Cells. Small, 2014, 10, 3560-3567.	10.0	114
11	Investigating thermoelectric properties of doped polyaniline nanowires. Synthetic Metals, 2014, 189, 177-182.	3.9	105
12	Stretchable Conductive Fibers Based on a Cracking Control Strategy for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1801683.	14.9	100
13	Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy, 2019, 58, 673-679.	16.0	84
14	Hybrid Conducting Biofilm with Builtâ€in Bacteria for Highâ€Performance Microbial Fuel Cells. ChemElectroChem, 2015, 2, 654-658.	3.4	77
15	SnSe ₂ Nanoparticles Chemically Embedded in a Carbon Shell for High-Rate Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 2346-2353.	8.0	77
16	A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling inÂvivo. Biomaterials, 2015, 54, 34-43.	11.4	75
17	[4 + 2] Cycloaddition Reaction To Approach Diazatwistpentacenes: Synthesis, Structures, Physical Properties, and Self-assembly. Journal of Organic Chemistry, 2014, 79, 4438-4445.	3.2	72
18	Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer. Chemical Engineering Research and Design, 2016, 114, 258-267.	5.6	72

JIANSHENG WU

#	Article	IF	CITATIONS
19	Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability. ACS Applied Materials & Interfaces, 2016, 8, 16932-16938.	8.0	64
20	Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li–S batteries. Journal of Energy Chemistry, 2020, 48, 128-135.	12.9	61
21	Compartmentalization within Selfâ€Assembled Metal–Organic Framework Nanoparticles for Tandem Reactions. Advanced Functional Materials, 2018, 28, 1802479.	14.9	55
22	Metal–Organic Framework Derivatives for Improving the Catalytic Activity of the CO Oxidation Reaction. ACS Applied Materials & Interfaces, 2017, 9, 15394-15398.	8.0	53
23	Fabrication of Flexible Transparent Electrode with Enhanced Conductivity from Hierarchical Metal Grids. ACS Applied Materials & Interfaces, 2017, 9, 39110-39115.	8.0	52
24	Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 4763-4769.	13.8	52
25	One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization. Microporous and Mesoporous Materials, 2020, 303, 110303.	4.4	45
26	Catalyst surfaces with tunable hydrophilicity and hydrophobicity: metal–organic frameworks toward controllable catalytic selectivity. Chemical Communications, 2018, 54, 3936-3939.	4.1	43
27	Wearable Leather-Based Electronics for Respiration Monitoring. ACS Applied Bio Materials, 2019, 2, 1427-1431.	4.6	39
28	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	5.8	37
29	WDL-RF: predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest. Bioinformatics, 2018, 34, 2271-2282.	4.1	36
30	Functional Macroâ€Microporous Metal–Organic Frameworks for Improving the Catalytic Performance. Small Methods, 2019, 3, 1800547.	8.6	35
31	Thermal Shrinkage Behavior of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2001389.	14.9	35
32	NaF-mediated controlled-synthesis of multicolor Na _x ScF _{3+x} :Yb/Er upconversion nanocrystals. Nanoscale, 2015, 7, 4048-4054.	5.6	33
33	Regulation of Cobalt–Nickel LDHs' Structure and Components for Optimizing the Performance of an Electrochemical Sensor. ACS Applied Nano Materials, 2019, 2, 6387-6396.	5.0	33
34	Hydrophilic silica spheres layer as ions shunt for enhanced Zn metal anode. Chemical Engineering Journal, 2022, 431, 133931.	12.7	33
35	Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization. Applied Surface Science, 2020, 512, 145740.	6.1	31
36	Modifiers versus Channels: Creating Shapeâ€5elective Catalysis of Metal Nanoparticles/Porous Nanomaterials. Angewandte Chemie - International Edition, 2021, 60, 976-982.	13.8	30

JIANSHENG WU

#	Article	IF	CITATIONS
37	Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 7184-7191.	10.3	28
38	Accelerating AutoDock Vina with GPUs. Molecules, 2022, 27, 3041.	3.8	28
39	Skin Conformal and Antibacterial PPy‣eather Electrode for ECG Monitoring. Advanced Electronic Materials, 2020, 6, 2000259.	5.1	26
40	Synthesis of Fe3O4 /Polyaniline Nanocomposite in Reversed Micelle Systems and its Performance Characteristics. Procedia Engineering, 2012, 27, 664-670.	1.2	25
41	Fabrication of a reversible SnS ₂ /RGO nanocomposite for high performance lithium storage. RSC Advances, 2016, 6, 32414-32421.	3.6	24
42	Regulating Electronic Status of Platinum Nanoparticles by Metal–Organic Frameworks for Selective Catalysis. CCS Chemistry, 2021, 3, 1607-1614.	7.8	21
43	Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance. ACS Applied Materials & Interfaces, 2020, 12, 23968-23975.	8.0	20
44	Controlled Synthesis of Uniform Na _{<i>x</i>} ScF _{3+<i>x</i>} Nanopolyhedrons, Nanoplates, Nanorods, and Nanospheres Using Solvents. Crystal Growth and Design, 2015, 15, 2988-2993.	3.0	18
45	Fast Intercalation in Locally Ordered Carbon Nanocrystallites for Superior Potassium Ions Storage. Advanced Functional Materials, 2022, 32, 2109672.	14.9	18
46	Co ₃ O ₄ nanoparticles embedded in nitrogen-doped graphitic carbon fibers as a free-standing electrode for promotion of lithium ion storage with capacitive contribution. Chemical Communications, 2020, 56, 5767-5770.	4.1	16
47	3D-conductive pathway written on leather for highly sensitive and durable electronic whisker. Journal of Materials Chemistry C, 2020, 8, 9748-9754.	5.5	15
48	Fabrication and physical properties of self-assembled ultralong polymer/small molecule hybrid microstructures. RSC Advances, 2015, 5, 25550-25554.	3.6	13
49	Fabrication of Two-Dimensional Metal–Organic Framework Nanosheets through Crystal Dissolution–Growth Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 7192-7199.	8.0	13
50	Precise modelling and interpretation of bioactivities of ligands targeting G protein-coupled receptors. Bioinformatics, 2019, 35, i324-i332.	4.1	12
51	Solution-based synthesis of SnO2 nanoparticle/CdS nanowire heterostructures. CrystEngComm, 2011, 13, 4580.	2.6	11
52	Nearly Pure Red Color Upconversion Luminescence of Ln-Doped Sc ₂ O ₃ with Unexpected RE-MOFs Molecular Alloys as Precursor. Inorganic Chemistry, 2018, 57, 10511-10517.	4.0	8
53	CNT@leather-based electronic bidirectional pressure sensor. Science China Technological Sciences, 2020, 63, 2137-2146.	4.0	8
54	Homologous G Protein-Coupled Receptors Boost the Modeling and Interpretation of Bioactivities of Ligand Molecules. Journal of Chemical Information and Modeling, 2020, 60, 1865-1875.	5.4	8

JIANSHENG WU

#	Article	IF	CITATIONS
55	Multi-channel sulfurized polyacrylonitrile with hollow structure as cathode for room temperature sodium–sulfur batteries. Journal of Solid State Chemistry, 2021, 301, 122359.	2.9	8
56	Classification of Mild Cognitive Impairment With Multimodal Data Using Both Labeled and Unlabeled Samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2281-2290.	3.0	7
57	Rational design of Ni3(HITP)2@GO composite for lithium-sulfur cathode. Applied Surface Science, 2022, 572, 151479.	6.1	7
58	A novel method for quantitatively predicting non-covalent interactions from protein and nucleic acid sequence. Journal of Molecular Graphics and Modelling, 2011, 31, 28-34.	2.4	6
59	Three-Dimensional Multilayered Interconnected Network of Conjugated Carbon Nanofibers Encapsulated Silicon/Graphene Oxide for Lithium Storage. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 801-807.	3.7	5
60	An <i>in situ</i> decorated cathode with LiF and F@C for performance enhanced Li–S batteries. Chemical Communications, 2020, 56, 6444-6447.	4.1	5
61	RealVS: Toward Enhancing the Precision of Top Hits in Ligand-Based Virtual Screening of Drug Leads from Large Compound Databases. Journal of Chemical Information and Modeling, 2021, 61, 4924-4939.	5.4	4
62	Transfer learning with molecular graph convolutional networks for accurate modeling and representation of bioactivities of ligands targeting GPCRs without sufficient data. Computational Biology and Chemistry, 2022, 98, 107664.	2.3	4
63	Text classification based on a novel ensemble multi-label learning method. , 2014, , .		2
64	Reactive Oxygen Species: Rhodamine-Modified Upconversion Nanophosphors for Ratiometric Detection of Hypochlorous Acid in Aqueous Solution and Living Cells (Small 17/2014). Small, 2014, 10, 3592-3592.	10.0	2
65	Function Prediction for G Protein-Coupled Receptors through Text Mining and Induction Matrix Completion. ACS Omega, 2019, 4, 3045-3054.	3.5	2
66	AFSE: towards improving model generalization of deep graph learning of ligand bioactivities targeting GPCR proteins. Briefings in Bioinformatics, 2022, 23, .	6.5	2
67	Synthesis of H3PW12O40•xH2O-doped polyaniline by chemical oxidative polymerization. Procedia Engineering, 2012, 27, 1448-1453.	1.2	1
68	Anchor graph hashing with semantically consistent graph. , 2016, , .		1
69	Metric learning for domain adversarial network. Frontiers of Computer Science, 2022, 16, 1.	2.4	1
70	Disclosing incoherent sparse and low-rank patterns inside homologous GPCR tasks for better modelling of ligand bioactivities. Frontiers of Computer Science, 2022, 16, .	2.4	1
71	One-dimensional nanowire assembly based on oriented polymer nanofibers. , 2011, , .		0
72	Recognition of microRNA-binding sites in proteins from sequences using Laplacian Support Vector		0

Machines with a hybrid feature. , 2013, , .

#	Article	IF	CITATIONS
73	Improvement of Electron Transport Properties of Polypyrrole Nano-films by In-situ Polymerization under High Pressure. Polymer-Plastics Technology and Engineering, 2014, 53, 1598-1606.	1.9	0