
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6195719/publications.pdf Version: 2024-02-01

Μλοκ Ριίδερ

#	Article	IF	CITATIONS
1	Outcomes and Perioperative Nutritional Management in a Porcine Model of Short Bowel Syndrome. Journal of Surgical Research, 2022, 274, 59-67.	1.6	4
2	Non-Surgical Removal of Partially Absorbable Bionic Implants. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 530-537.	3.2	1
3	An in-line digestive cartridge increases enteral fat and vitamin absorption in a porcine model of short bowel syndrome. Clinical Nutrition, 2022, 41, 1093-1101.	5.0	4
4	Fish Oil Emulsion Reduces Liver Injury and Liver Transplantation in Children with Intestinal Failure-Associated Liver Disease: A Multicenter Integrated Study. Journal of Pediatrics, 2021, 230, 46-54.e2.	1.8	30
5	Prevention and Management of Parenteral Nutrition-Associated Cholestasis and Intestinal Failure-Associated Liver Disease in the Critically III Infant. World Review of Nutrition and Dietetics, 2021, 122, 379-399.	0.3	5
6	Free Fatty Acid Receptors as Mediators and Therapeutic Targets in Liver Disease. Frontiers in Physiology, 2021, 12, 656441.	2.8	30
7	Dietary ω-3 Fatty Acid Supplementation Improves Murine Sickle Cell Bone Disease and Reprograms Adipogenesis. Antioxidants, 2021, 10, 799.	5.1	3
8	Investigation of the mechanisms of VEGF-mediated compensatory lung growth: the role of the VEGF heparin-binding domain. Scientific Reports, 2021, 11, 11827.	3.3	7
9	Visual Dysfunction after Repetitive Mild Traumatic Brain Injury in a Mouse Model and Ramifications on Behavioral Metrics. Journal of Neurotrauma, 2021, 38, 2881-2895.	3.4	9
10	Deficiency in pigment epitheliumâ€derived factor accelerates pulmonary growth and development in a compensatory lung growth model. FASEB Journal, 2021, 35, e21850.	0.5	2
11	Use of Intravenous Soybean and Fish Oil Emulsions in Pediatric Intestinal Failure Associated Liver Disease: A Multicenter Integrated Analysis Report on Extrahepatic Adverse Events. Journal of Pediatrics, 2021, , .	1.8	6
12	Current strategies for managing intestinal failure-associated liver disease. Expert Opinion on Drug Safety, 2021, 20, 307-320.	2.4	13
13	Oneâ€year Experience With Composite Intravenous Lipid Emulsion in Children on Home Parenteral Nutrition. Journal of Pediatric Gastroenterology and Nutrition, 2021, 72, 451-455.	1.8	3
14	Use of Fish Oil Intravenous Lipid Emulsions as Monotherapy in the Pediatric Intestinal Failure Patient: Beyond the Package Insert. Nutrition in Clinical Practice, 2020, 35, 108-118.	2.4	11
15	Trends of INR and Fecal Excretion of Vitamin K During Cholestasis Reversal: Implications in the Treatment of Neonates With Intestinal Failure–Associated Liver Disease. Journal of Parenteral and Enteral Nutrition, 2020, 44, 951-958.	2.6	6
16	Growth in Infants and Children With Intestinal Failureâ€associated Liver Disease Treated With Intravenous Fish Oil. Journal of Pediatric Gastroenterology and Nutrition, 2020, 70, 261-268.	1.8	10
17	Roxadustat (FG-4592) accelerates pulmonary growth, development, and function in a compensatory lung growth model. Angiogenesis, 2020, 23, 637-649.	7.2	14
18	Optimizing Duration of Empiric Management of Suspected Central Line-Associated Bloodstream Infections in Pediatric Patients with Intestinal Failure. Journal of Pediatrics, 2020, 227, 69-76.e3.	1.8	0

#	Article	IF	CITATIONS
19	Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice. Angiogenesis, 2020, 23, 385-394.	7.2	17
20	Intravenous Fish Oil Monotherapy as a Source of Calories and Fatty Acids Promotes Age-Appropriate Growth in Pediatric Patients with Intestinal Failure-Associated Liver Disease. Journal of Pediatrics, 2020, 219, 98-105.e4.	1.8	19
21	Essential Fatty Acid Status in Surgical Infants Receiving Parenteral Nutrition With a Composite Lipid Emulsion: A Case Series. Journal of Parenteral and Enteral Nutrition, 2019, 43, 305-310.	2.6	27
22	Metabolic and Inflammatory Effects of an ωâ€3 Fatty Acid–Based Eucaloric Ketogenic Diet in Mice With Endotoxemia. Journal of Parenteral and Enteral Nutrition, 2019, 43, 986-997.	2.6	3
23	Alpha-tocopherol in intravenous lipid emulsions imparts hepatic protection in a murine model of hepatosteatosis induced by the enteral administration of a parenteral nutrition solution. PLoS ONE, 2019, 14, e0217155.	2.5	12
24	The evolving use of intravenous lipid emulsions in the neonatal intensive care unit. Seminars in Perinatology, 2019, 43, 151155.	2.5	9
25	Omega-3 fatty acids are protective in hepatic ischemia reperfusion injury in the absence of GPR120 signaling. Journal of Pediatric Surgery, 2019, 54, 2392-2397.	1.6	9
26	Fish oil–based injectable lipid emulsions containing medium-chain triglycerides or added α-tocopherol offer anti-inflammatory benefits in a murine model of parenteral nutrition–induced liver injury. American Journal of Clinical Nutrition, 2019, 109, 1038-1050.	4.7	12
27	Fish oil protects the liver from parenteral nutrition-induced injury via GPR120-mediated PPARÎ ³ signaling. Prostaglandins Leukotrienes and Essential Fatty Acids, 2019, 143, 8-14.	2.2	14
28	A Diet With Docosahexaenoic and Arachidonic Acids as the Sole Source of Polyunsaturated Fatty Acids Is Sufficient to Support Visual, Cognitive, Motor, and Social Development in Mice. Frontiers in Neuroscience, 2019, 13, 72.	2.8	14
29	Effects of dietary omega-3 fatty acids on bones of healthy mice. Clinical Nutrition, 2019, 38, 2145-2154.	5.0	8
30	An Intravenous Fish Oil–Based Lipid Emulsion Successfully Treats Intractable Pruritus and Cholestasis in a Patient with Microvillous Inclusion Disease. Hepatology, 2019, 69, 1353-1356.	7.3	7
31	Commentary on "Fish Oil–Containing Lipid Emulsions in Adult Parenteral Nutrition: A Review of the Evidenceâ€: Journal of Parenteral and Enteral Nutrition, 2019, 43, 454-455.	2.6	2
32	Pediatric Intestinal Failure–Associated Liver Disease: Challenges in Identifying Clinically Relevant Biomarkers. Journal of Parenteral and Enteral Nutrition, 2018, 42, 455-462.	2.6	9
33	Pretreatment with intravenous fish oil reduces hepatic ischemia reperfusion injury in a murine model. Surgery, 2018, 163, 1035-1039.	1.9	4
34	Vascular endothelial growth factor accelerates compensatory lung growth by increasing the alveolar units. Pediatric Research, 2018, 83, 1182-1189.	2.3	15
35	Central Line–Associated Bloodstream Infection among Children with Intestinal Failure Presenting to the Emergency Department with Fever. Journal of Pediatrics, 2018, 196, 237-243.e1.	1.8	16
36	Redefining essential fatty acids in the era of novel intravenous lipid emulsions. Clinical Nutrition, 2018, 37, 784-789.	5.0	38

#	Article	IF	CITATIONS
37	An Evolving Story of Translational Research: A Decade after the Jacobson Promising Investigator Award. Journal of the American College of Surgeons, 2018, 226, 100-103.	0.5	1
38	Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clinical Nutrition, 2018, 37, 1-18.	5.0	97
39	A paradoxical method to enhance compensatory lung growth: Utilizing a VEGF inhibitor. PLoS ONE, 2018, 13, e0208579.	2.5	5
40	Vascular Endothelial Growth Factor Enhances Compensatory Lung Growth in Piglets. Surgery, 2018, 164, 1279-1286.	1.9	5
41	Intranasal delivery of VEGF enhances compensatory lung growth in mice. PLoS ONE, 2018, 13, e0198700.	2.5	15
42	Heparin impairs angiogenic signaling and compensatory lung growth after left pneumonectomy. Angiogenesis, 2018, 21, 837-848.	7.2	10
43	Heparin-Binding Epidermal Growth Factor–Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. American Journal of Pathology, 2018, 188, 2446-2456.	3.8	66
44	Characterization of Fatty Acid Profiles in Infants With Intestinal Failure–Associated Liver Disease. Journal of Parenteral and Enteral Nutrition, 2018, 42, 71-77.	2.6	5
45	Dietary Omega-3 Fatty Acid Supplementation Improves Sickle Cell Bone Disease By Affecting Osteoblastogenesis and Adipogenesis. Blood, 2018, 132, 2356-2356.	1.4	0
46	A Comparison of Fish Oil Sources for Parenteral Lipid Emulsions in a Murine Model. Journal of Parenteral and Enteral Nutrition, 2017, 41, 181-187.	2.6	12
47	Longâ€Term Fish Oil Lipid Emulsion Use in Children With Intestinal Failure–Associated Liver Disease. Journal of Parenteral and Enteral Nutrition, 2017, 41, 930-937.	2.6	40
48	Risk of post-procedural bleeding in children on intravenous fish oil. American Journal of Surgery, 2017, 214, 733-737.	1.8	16
49	Use of a novel docosahexaenoic acid formulation vs control in a neonatal porcine model of short bowel syndrome leads to greater intestinal absorption and higher systemic levels of DHA. Nutrition Research, 2017, 39, 51-60.	2.9	7
50	Parenteral Soybean Oil Induces Hepatosteatosis Despite Addition of Fish Oil in a Mouse Model of Intestinal Failure–Associated Liver Disease. Journal of Parenteral and Enteral Nutrition, 2017, 42, 014860711769524.	2.6	3
51	Technique and perioperative management of left pneumonectomy in neonatal piglets. Journal of Surgical Research, 2017, 212, 146-152.	1.6	2
52	Bioequivalence Demonstration for Ω-3 Acid Ethyl Ester Formulations: Rationale for Modification of Current Guidance. Clinical Therapeutics, 2017, 39, 652-658.	2.5	12
53	Reducing Time to Antibiotics in Children With Intestinal Failure, Central Venous Line, and Fever. Pediatrics, 2017, 140, e20171201.	2.1	6
54	Response to Driscoll. Journal of Parenteral and Enteral Nutrition, 2017, 41, 704-705.	2.6	0

#	Article	IF	CITATIONS
55	Higher Doses of Fish Oil–Based Lipid Emulsions Used to Treat Inadequate Weight Gain and Rising Triene:Tetraene Ratio in a Severely Malnourished Infant With Intestinal Failure–Associated Liver Disease. Journal of Parenteral and Enteral Nutrition, 2017, 41, 667-671.	2.6	7
56	Assessment of Micronutrient Status in Critically III Children: Challenges and Opportunities. Nutrients, 2017, 9, 1185.	4.1	38
57	Eucaloric Ketogenic Diet Reduces Hypoglycemia and Inflammation in Mice with Endotoxemia. Lipids, 2016, 51, 703-714.	1.7	25
58	Intravenous Fat Emulsion Formulations for the Adult and Pediatric Patient. Nutrition in Clinical Practice, 2016, 31, 596-609.	2.4	64
59	Predictors of failure of fish-oil therapy for intestinal failure–associated liver disease in children,. American Journal of Clinical Nutrition, 2016, 104, 663-670.	4.7	32
60	Methods to reduce medication errors in a clinical trial of an investigational parenteral medication. Contemporary Clinical Trials Communications, 2016, 4, 64-67.	1.1	2
61	Lipid emulsions in the treatment and prevention of parenteral nutrition–associated liver disease in infants and children–. American Journal of Clinical Nutrition, 2016, 103, 629S-634S.	4.7	68
62	Challenging the 48â€Hour Ruleâ€Out for Central Line–Associated Bloodstream Infections in the Pediatric Intestinal Failure Population. Journal of Parenteral and Enteral Nutrition, 2016, 40, 567-573.	2.6	23
63	Dietary Â-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease. Haematologica, 2015, 100, 870-880.	3.5	51
64	The Natural History of Cirrhosis From Parenteral Nutrition-Associated Liver Disease After Resolution of Cholestasis With Parenteral Fish Oil Therapy. Annals of Surgery, 2015, 261, 172-179.	4.2	46
65	Elevated Alkaline Phosphatase in Infants With Parenteral Nutrition–Associated Liver Disease Reflects Bone Rather Than Liver Disease. Journal of Parenteral and Enteral Nutrition, 2015, 39, 973-976.	2.6	5
66	Clinically Relevant Mechanisms of Lipid Synthesis, Transport, and Storage. Journal of Parenteral and Enteral Nutrition, 2015, 39, 8S-17S.	2.6	14
67	Intravenous Lipid Emulsions in Parenteral Nutrition. Advances in Nutrition, 2015, 6, 600-610.	6.4	67
68	The addition of medium-chain triglycerides to a purified fish oil-based diet alters inflammatory profiles in mice. Metabolism: Clinical and Experimental, 2015, 64, 274-282.	3.4	36
69	A Comparison of 2 Intravenous Lipid Emulsions. Journal of Parenteral and Enteral Nutrition, 2014, 38, 693-701.	2.6	62
70	Neonates With Short Bowel Syndrome. JAMA Surgery, 2014, 149, 663.	4.3	96
71	The effect of docosahexaenoic acid on bone microstructure in young mice and bone fracture in neonates. Journal of Surgical Research, 2014, 191, 148-155.	1.6	20
72	Docosahexaenoic acid, G protein–coupled receptors, and melanoma: is G protein–coupled receptor 40 a potential therapeutic target?. Journal of Surgical Research, 2014, 188, 451-458.	1.6	20

#	Article	IF	CITATIONS
73	Dietary ï‰-3 Fatty Acid Supplementation As a Potential New Therapy for Vasculopathy in Sickle Cell Disease: Proof of Concept in a Transgenic Mouse Model. Blood, 2014, 124, 220-220.	1.4	5
74	Provision of a Soyâ€Based Intravenous Lipid Emulsion at 1 g/kg/d Does Not Prevent Cholestasis in Neonates. Journal of Parenteral and Enteral Nutrition, 2013, 37, 498-505.	2.6	55
75	The Role of the ωâ€3 Fatty Acid DHA in the Human Life Cycle. Journal of Parenteral and Enteral Nutrition, 2013, 37, 15-22.	2.6	59
76	Neonatal intestinal physiology and failure. Seminars in Pediatric Surgery, 2013, 22, 190-194.	1.1	15
77	Role of parenteral lipid emulsions in the preterm infant. Early Human Development, 2013, 89, S45-S49.	1.8	15
78	The effect of varying ratios of docosahexaenoic acid and arachidonic acid in the prevention and reversal of biochemical essential fatty acid deficiency in a murine model. Metabolism: Clinical and Experimental, 2013, 62, 499-508.	3.4	25
79	Scoliosis after chest wall resection. Journal of Children's Orthopaedics, 2013, 7, 301-307.	1.1	24
80	Dietary Fish Oil Aggravates Paracetamol-Induced Liver Injury in Mice. Journal of Parenteral and Enteral Nutrition, 2013, 37, 268-273.	2.6	8
81	Intravenous fish oil lipid emulsion promotes a shift toward anti-inflammatory proresolving lipid mediators. American Journal of Physiology - Renal Physiology, 2013, 305, G818-G828.	3.4	40
82	Fish oil-based lipid emulsion in the treatment of parenteral nutrition-associated liver disease. Current Opinion in Pediatrics, 2013, 25, 193-200.	2.0	22
83	Treatment of Parenteral Nutrition-Associated Liver Disease: The Role of Lipid Emulsions. Advances in Nutrition, 2013, 4, 711-717.	6.4	54
84	Epoxyeicosanoids promote organ and tissue regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13528-13533.	7.1	124
85	A Metabolomic Analysis of Two Intravenous Lipid Emulsions in a Murine Model. PLoS ONE, 2013, 8, e59653.	2.5	18
86	A Tutorial on Fatty Acid Biology. Journal of Parenteral and Enteral Nutrition, 2012, 36, 380-388.	2.6	26
87	Docosahexaenoic Acid and Arachidonic Acid Prevent Essential Fatty Acid Deficiency and Hepatic Steatosis. Journal of Parenteral and Enteral Nutrition, 2012, 36, 431-441.	2.6	26
88	Cholestasis and growth in neonates with gastroschisis. Journal of Pediatric Surgery, 2012, 47, 1529-1536.	1.6	16
89	Purified fish oil eliminating linoleic and alpha linolenic acid meets essential fatty acid requirements in rats. Metabolism: Clinical and Experimental, 2012, 61, 1443-1451.	3.4	10
90	Prolonging the female reproductive lifespan and improving egg quality with dietary omegaâ€3 fatty acids. Aging Cell, 2012, 11, 1046-1054.	6.7	86

#	Article	IF	CITATIONS
91	The Use of Fish Oil Lipid Emulsion in the Treatment of Intestinal Failure Associated Liver Disease (IFALD). Nutrients, 2012, 4, 1828-1850.	4.1	27
92	Tissueâ€specific differences in inflammatory infiltrate and matrix metalloproteinase expression in adipose tissue and liver of mice with dietâ€induced obesity. Hepatology Research, 2012, 42, 601-610.	3.4	25
93	Arachidonic acid and docosahexaenoic acid supplemented to an essential fatty acid–deficient diet alters the response to endotoxin in rats. Metabolism: Clinical and Experimental, 2012, 61, 395-406.	3.4	5
94	Comparison of 5 intravenous lipid emulsions and their effects on hepatic steatosis in a murine model. Journal of Pediatric Surgery, 2011, 46, 666-673.	1.6	83
95	Surgical intervention in the setting of parenteral nutrition–associated cholestasis may exacerbate liver injury. Journal of Pediatric Surgery, 2011, 46, 122-127.	1.6	8
96	Use of an omega-3 fatty acid–based emulsion in the treatment of parenteral nutrition–induced cholestasis in patients with microvillous inclusion diseaseâ~†. Journal of Pediatric Surgery, 2011, 46, 2376-2382.	1.6	18
97	The Prevention andÂTreatment ofÂIntestinal Failure-associated Liver Disease inÂNeonates andÂChildren. Surgical Clinics of North America, 2011, 91, 543-563.	1.5	41
98	Effects of glucose or fat calories in total parenteral nutrition on fat metabolism and systemic inflammation in rats. Metabolism: Clinical and Experimental, 2011, 60, 195-205.	3.4	7
99	Parenteral fish-oil–based lipid emulsion improves fatty acid profiles and lipids in parenteral nutrition–dependent children. American Journal of Clinical Nutrition, 2011, 94, 749-758.	4.7	80
100	Tumor Necrosis Factor α-Converting Enzyme Inhibition Reverses Hepatic Steatosis and Improves Insulin Sensitivity Markers and Surgical Outcome in Mice. PLoS ONE, 2011, 6, e25587.	2.5	20
101	Parenteral Fish Oil as Monotherapy Prevents Essential Fatty Acid Deficiency in Parenteral Nutrition–dependent Patients. Journal of Pediatric Gastroenterology and Nutrition, 2010, 50, 212-218.	1.8	91
102	Parenteral Fish Oil Monotherapy in the Management of Patients With Parenteral Nutrition–Associated Liver Disease. Archives of Surgery, 2010, 145, 547.	2.2	72
103	Prevention of parenteral nutrition-associated liver disease: role of ï‰-3 fish oil. Current Opinion in Organ Transplantation, 2010, 15, 334-340.	1.6	80
104	Dietary fat intake promotes the development of hepatic steatosis independently from excess caloric consumption in a murine model. Metabolism: Clinical and Experimental, 2010, 59, 1092-1105.	3.4	84
105	Infant Parenteral Nutrition–Associated Cholestasis: A Severe latrogenic Disease. Journal of Parenteral and Enteral Nutrition, 2010, 34, 94-95.	2.6	1
106	Rapid Infusion of Fish Oil–Based Emulsion in Infants Does Not Appear to be Associated With Fat Overload Syndrome. Nutrition in Clinical Practice, 2010, 25, 399-402.	2.4	25
107	Parenteral Fish Oil as Monotherapy Improves Lipid Profiles in Children With Parenteral Nutrition–Associated Liver Disease. Journal of Parenteral and Enteral Nutrition, 2010, 34, 477-484.	2.6	39
108	Repetitive orogastric gavage affects the phenotype of diet-induced obese mice. Physiology and Behavior, 2010, 100, 387-393.	2.1	30

#	Article	IF	CITATIONS
109	Early development of essential fatty acid deficiency in rats: Fat-free vs. hydrogenated coconut oil diet. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 83, 229-237.	2.2	9
110	Innovative parenteral and enteral nutrition therapy for intestinal failure. Seminars in Pediatric Surgery, 2010, 19, 27-34.	1.1	34
111	Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice. PLoS ONE, 2010, 5, e11256.	2.5	55
112	Impact of Fish Oil-Based Lipid Emulsion on Serum Triglyceride, Bilirubin, and Albumin Levels in Children With Parenteral Nutrition-Associated Liver Disease. Pediatric Research, 2009, 66, 698-703.	2.3	63
113	Parenteral fish oil as monotherapy for patients with parenteral nutrition-associated liver disease. Pediatric Surgery International, 2009, 25, 123-124.	1.4	22
114	Fish Oil–Based Lipid Emulsions Prevent and Reverse Parenteral Nutrition–Associated Liver Disease: The Boston Experience. Journal of Parenteral and Enteral Nutrition, 2009, 33, 541-547.	2.6	157
115	The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukotrienes and Essential Fatty Acids, 2009, 81, 165-170.	2.2	125
116	Parenteral Fish Oil Improves Outcomes in Patients With Parenteral Nutrition-Associated Liver Injury. Annals of Surgery, 2009, 250, 395-402.	4.2	344
117	Fish oil prevents essential fatty acid deficiency and enhances growth: clinical and biochemical implications. Metabolism: Clinical and Experimental, 2008, 57, 698-707.	3.4	49
118	Safety and Efficacy of a Fish-Oil–Based Fat Emulsion in the Treatment of Parenteral Nutrition–Associated Liver Disease. Pediatrics, 2008, 121, e678-e686.	2.1	427
119	The Role of an Intravenous Fat Emulsion Composed of Fish Oil in a Parenteral Nutritionâ€Đependent Patient With Hypertriglyceridemia. Nutrition in Clinical Practice, 2007, 22, 664-672.	2.4	27
120	Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L742-L747.	2.9	63
121	Omega-3 fatty acids and liver disease. Hepatology, 2007, 45, 841-845.	7.3	61
122	Current Clinical Applications of Ωâ€6 and Ωâ€3 Fatty Acids. Nutrition in Clinical Practice, 2006, 21, 323-341.	2.4	96
123	Acute necrotizing cholecystitis: a rare complication of ceftriaxone-associated pseudolithiasis. Pediatric Surgery International, 2006, 22, 562-564.	1.4	13
124	Inhibition of matrix metalloproteinases increases PPAR-α and IL-6 and prevents dietary-induced hepatic steatosis and injury in a murine model. American Journal of Physiology - Renal Physiology, 2006, 291, G1011-G1019.	3.4	28
125	Reversal of Parenteral Nutrition–Associated Liver Disease in Two Infants With Short Bowel Syndrome Using Parenteral Fish Oil: Implications for Future Management. Pediatrics, 2006, 118, e197-e201.	2.1	309
126	Omega-3 Fatty Acids Improve Hepatic Steatosis in a Murine Model: Potential Implications for the Marginal Steatotic Liver Donor. Transplantation, 2005, 79, 606-608.	1.0	70

#	Article	IF	CITATIONS
127	Thymoma in a child: case report and review of the literature. Pediatric Surgery International, 2005, 21, 548-551.	1.4	33
128	Use of a fish oil-based lipid emulsion to treat essential fatty acid deficiency in a soy allergic patient receiving parenteral nutrition. Clinical Nutrition, 2005, 24, 839-847.	5.0	124
129	Omega-3 Fatty Acid Supplementation Prevents Hepatic Steatosis in a Murine Model of Nonalcoholic Fatty Liver Disease. Pediatric Research, 2005, 57, 445-452.	2.3	189
130	Pneumonectomy in the Mouse: Technique and Perioperative Management. Journal of Investigative Surgery, 2005, 18, 201-205.	1.3	28
131	The route of lipid administration affects parenteral nutrition–induced hepatic steatosis in a mouse model. Journal of Pediatric Surgery, 2005, 40, 1446-1453.	1.6	62
132	Do polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREPB-1 suppression or by correcting essential fatty acid deficiency. Hepatology, 2004, 39, 1176-1177.	7.3	23
133	Partial Hepatectomy in the Mouse: Technique and Perioperative Management. Journal of Investigative Surgery, 2003, 16, 99-102.	1.3	153
134	Partial Hepatectomy in the Mouse: Technique and Perioperative Management. Journal of Investigative Surgery, 2003, 16, 99-102.	1.3	8