
Yueh-Ming Loo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/619559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Science Translational Medicine, 2022, 14, eabl8124.	12.4	143
2	A bivalent SARS-CoV-2 monoclonal antibody combination does not affect the immunogenicity of a vector-based COVID-19 vaccine in macaques. Science Translational Medicine, 2022, 14, .	12.4	3
3	Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nature Communications, 2022, 13, .	12.8	93
4	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	13.3	237
5	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	27.8	956
6	DHX15 Is a Coreceptor for RLR Signaling That Promotes Antiviral Defense Against RNA Virus Infection. Journal of Interferon and Cytokine Research, 2019, 39, 331-346.	1.2	41
7	IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection. Journal of Leukocyte Biology, 2019, 105, 411-425.	3.3	6
8	The Nucleotide Sensor ZBP1 and Kinase RIPK3 Induce the Enzyme IRG1 to Promote an Antiviral Metabolic State in Neurons. Immunity, 2019, 50, 64-76.e4.	14.3	214
9	RIC-I and Other RNA Sensors in Antiviral Immunity. Annual Review of Immunology, 2018, 36, 667-694.	21.8	343
10	Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells. Journal of Immunology, 2018, 201, 3036-3050.	0.8	19
11	A small-molecule IRF3 agonist functions as an influenza vaccine adjuvant by modulating the antiviral immune response. Vaccine, 2017, 35, 1964-1971.	3.8	39
12	RIPK3 Restricts Viral Pathogenesis via Cell Death-Independent Neuroinflammation. Cell, 2017, 169, 301-313.e11.	28.9	163
13	Interferon lambda 4 expression is suppressed by the host during viral infection. Journal of Experimental Medicine, 2016, 213, 2539-2552.	8.5	55
14	Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway. Journal of Virology, 2016, 90, 2372-2387.	3.4	56
15	Membrane Perturbation-Associated Ca ²⁺ Signaling and Incoming Genome Sensing Are Required for the Host Response to Low-Level Enveloped Virus Particle Entry. Journal of Virology, 2016, 90, 3018-3027.	3.4	26
16	RNase L Activates the NLRP3 Inflammasome during Viral Infections. Cell Host and Microbe, 2015, 17, 466-477.	11.0	128
17	Class A Scavenger Receptor–Mediated Double-Stranded RNA Internalization Is Independent of Innate Antiviral Signaling and Does Not Require Phosphatidylinositol 3-Kinase Activity. Journal of Immunology, 2015, 195, 3858-3865.	0.8	36
18	Uridine Composition of the Poly-U/UC Tract of HCV RNA Defines Non-Self Recognition by RIG-I. PLoS Pathogens, 2012, 8, e1002839.	4.7	87

YUEH-MING LOO

#	Article	IF	CITATIONS
19	The Mitochondrial Targeting Chaperone 14-3-3ε Regulates a RIG-I Translocon that Mediates Membrane Association and Innate Antiviral Immunity. Cell Host and Microbe, 2012, 11, 528-537.	11.0	184
20	lsoflavone Agonists of IRF-3 Dependent Signaling Have Antiviral Activity against RNA Viruses. Journal of Virology, 2012, 86, 7334-7344.	3.4	50
21	Immune Signaling by RIG-I-like Receptors. Immunity, 2011, 34, 680-692.	14.3	1,570
22	Unveiling viral enablers. Nature Biotechnology, 2008, 26, 1093-1094.	17.5	3
23	Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. Journal of Virology, 2008, 82, 335-345.	3.4	897