
Bhawani Chamlagain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6194963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Metabolic Networks at the Mucus Layer Lead to Diet-Independent Butyrate and Vitamin B ₁₂ Production by Intestinal Symbionts. MBio, 2017, 8, .	4.1	269
2	Comparative genomics and physiology of the butyrateâ€producing bacterium <i>Intestinimonas butyriciproducens</i> . Environmental Microbiology Reports, 2016, 8, 1024-1037.	2.4	104
3	Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. Journal of Food Composition and Analysis, 2019, 82, 103226.	3.9	84
4	Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices. Food Chemistry, 2015, 166, 630-638.	8.2	66
5	<i>In situ</i> production of active vitamin B12 in cereal matrices using <i>Propionibacterium freudenreichii</i> . Food Science and Nutrition, 2018, 6, 67-76.	3.4	48
6	Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Frontiers in Microbiology, 2017, 8, 368.	3.5	42
7	Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in Wheat Bran for in situ Production of Vitamin B12. Frontiers in Microbiology, 2019, 10, 1541.	3.5	41
8	BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii. Microbial Cell Factories, 2015, 14, 186.	4.0	40
9	Effect of the lower ligand precursors on vitamin B12 production by food-grade Propionibacteria. LWT - Food Science and Technology, 2016, 72, 117-124.	5.2	38
10	Stability of added and in situ-produced vitamin B12 in breadmaking. Food Chemistry, 2016, 204, 21-28.	8.2	35
11	In situ fortification of vitamin B12 in wheat flour and wheat bran by fermentation with Propionibacterium freudenreichii. Journal of Cereal Science, 2018, 81, 133-139.	3.7	35
12	Biofortification of riboflavin and folate in idli batter, based on fermented cereal and pulse, by <i>Lactococcus lactis</i> N8 and <i>Saccharomyces boulardii</i> SAA655. Journal of Applied Microbiology, 2017, 122, 1663-1671.	3.1	33
13	Fermentation of cereal, pseudo-cereal and legume materials with Propionibacterium freudenreichii and Levilactobacillus brevis for vitamin B12 fortification. LWT - Food Science and Technology, 2021, 137, 110431.	5.2	26
14	In situ production of vitamin B12 and dextran in soya flour and rice bran: A tool to improve flavour and texture of B12-fortified bread. LWT - Food Science and Technology, 2022, 161, 113407.	5.2	22
15	Trends of Antibiotic Resistance in Mesophilic and Psychrotrophic Bacterial Populations during Cold Storage of Raw Milk. , 2012, 2012, 1-13.		16
16	Letter to the editor on â€~Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri, IJFM. 206:56–59'. International Journal of Food Microbiology, 2016, 228, 33.	4.7	5
17	Bioaccessibility of vitamin B12 synthesized by Propionibacterium freudenreichii and from products made with fermented wheat bran extract. Current Research in Food Science, 2021, 4, 499-502.	5.8	5
18	Niacin contents of cereal-milling products in food-composition databases need to be updated. Journal of Food Composition and Analysis, 2020, 91, 103518.	3.9	3