
Biagio De Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6194506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PDâ€lâ€induced T cell exhaustion is controlled by a Drp1â€dependent mechanism. Molecular Oncology, 2022, 16, 188-205.	4.6	15
2	Nanoparticles for Diagnosis and Target Therapy in Pediatric Brain Cancers. Diagnostics, 2022, 12, 173.	2.6	16
3	Dual IGF1R/IR inhibitors in combination with GD2-CAR T-cells display a potent anti-tumor activity in diffuse midline glioma H3K27M-mutant. Neuro-Oncology, 2022, 24, 1150-1163.	1.2	31
4	FGFR1 is a potential therapeutic target in neuroblastoma. Cancer Cell International, 2022, 22, 174.	4.1	5
5	Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. , 2022, 10, e003486.		21
6	Time 2EVOLVE: predicting efficacy of engineered T-cells – how far is the bench from the bedside?. , 2022, 10, e003487.		13
7	CD28.OX40 co-stimulatory combination is associated with long in vivo persistence and high activity of CAR.CD30 T-cells. Haematologica, 2021, 106, 987-999.	3.5	42
8	ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biology, 2021, 22, 51.	8.8	71
9	GD2 redirected CAR T and activated NK-cell-mediated secretion of IFNÎ ³ overcomes MYCN-dependent IDO1 inhibition, contributing to neuroblastoma cell immune escape. , 2021, 9, e001502.		15
10	Oncolytic adenovirus and gene therapy with EphA2-BiTE for the treatment of pediatric high-grade gliomas. , 2021, 9, e001930.		21
11	Establishment and Characterization of a Cell Line (S-RMS1) Derived from an Infantile Spindle Cell Rhabdomyosarcoma with SRF-NCOA2 Fusion Transcript. International Journal of Molecular Sciences, 2021, 22, 5484.	4.1	4
12	Crosstalk between Macrophages and Myxoid Liposarcoma Cells Increases Spreading and Invasiveness of Tumor Cells. Cancers, 2021, 13, 3298.	3.7	5
13	Strategy to prevent epitope masking in CAR.CD19+ B-cell leukemia blasts. , 2021, 9, e001514.		10
14	Innovative and Promising Strategies to Enhance Effectiveness of Immunotherapy for CNS Tumors: Where Are We?. Frontiers in Immunology, 2021, 12, 634031.	4.8	2
15	Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathologica, 2021, 142, 537-564.	7.7	21
16	PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches. Cancers, 2021, 13, 4040.	3.7	21
17	Manipulating the Metabolism to Improve the Efficacy of CAR T-Cell Immunotherapy. Cells, 2021, 10, 14.	4.1	34
18	Inclusion of the Inducible Caspase 9 Suicide Gene in CAR Construct Increases Safety of CAR.CD19 T Cell Therapy in B-Cell Malignancies. Frontiers in Immunology, 2021, 12, 755639.	4.8	23

BIAGIO DE ANGELIS

#	Article	IF	CITATIONS
19	Polymorphonuclear myeloid-derived suppressor cells impair the anti-tumor efficacy of GD2.CAR T-cells in patients with neuroblastoma. Journal of Hematology and Oncology, 2021, 14, 191.	17.0	39
20	Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia, 2020, 34, 1102-1115.	7.2	63
21	NK cells as adoptive cellular therapy for hematological malignancies: Advantages and hurdles. Seminars in Hematology, 2020, 57, 175-184.	3.4	10
22	CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Frontiers in Pharmacology, 2020, 11, 1230.	3.5	20
23	DNA Methylation Profiling for Diagnosing Undifferentiated Sarcoma with Capicua Transcriptional Receptor (CIC) Alterations. International Journal of Molecular Sciences, 2020, 21, 1818.	4.1	24
24	Stimuli-responsive nanoparticle-assisted immunotherapy: a new weapon against solid tumours. Journal of Materials Chemistry B, 2020, 8, 1823-1840.	5.8	32
25	Next-Generation Sequencing Approaches for the Identification of Pathognomonic Fusion Transcripts in Sarcomas: The Experience of the Italian ACC Sarcoma Working Group. Frontiers in Oncology, 2020, 10, 489.	2.8	38
26	Transcription Factors Involved in Tumorigenesis Are Over-Represented in Mutated Active DNA-Binding Sites in Neuroblastoma. Cancer Research, 2020, 80, 382-393.	0.9	30
27	Identification of New Soluble Factors Correlated With the Development of Graft Failure After Haploidentical Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2020, 11, 613644.	4.8	3
28	IMMU-13. DUAL IGF1R/IR INHIBITOR IN COMBINATION WITH GD2-CAR T-CELLS AS A POTENT THERAPEUTIC STRATEGY FOR H3K27M-MUTANT DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2020, 22, iii362-iii362.	1.2	0
29	TMOD-14. INNOVATIVE 3D MODEL FOR THE ESTABLISHMENT OF PRIMARY PAEDIATRIC LOW-GRADE GLIOMA (LGG) CULTURES: NEW PLATFORM FOR ADVANCED PRECLINICAL STUDIES OF INNOVATIVE AND IMMUNOTHERAPEUTIC APPROACHES. Neuro-Oncology, 2019, 21, ii123-ii124.	1.2	0
30	IMMU-12. NOVEL APPROACH FOR THE TREATMENT OF PEDIATRIC HIGH-GRADE GLIOMAS WITH THE COMBINATION OF ONCOLYTIC ADENOVIRUSES AND GENE THERAPY ENCODING A BITE DIRECTED TO THE EphA2 TUMOR ANTIGEN Neuro-Oncology, 2019, 21, ii95-ii95.	1.2	0
31	Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Frontiers in Immunology, 2019, 10, 957.	4.8	88
32	Universal Ready-to-Use Immunotherapeutic Approach for the Treatment of Cancer: Expanded and Activated Polyclonal γδ Memory T Cells. Frontiers in Immunology, 2019, 10, 2717.	4.8	31
33	Expression profiles of exosomal miRNAs isolated from plasma of patients with desmoplastic small round cell tumor. Epigenomics, 2019, 11, 489-500.	2.1	16
34	Academic, Phase I/II Trial on T Cells Expressing a Second Generation, CD19-Specific Chimeric Antigen Receptor (CAR) and Inducible Caspase 9 Safety Switch for the Treatment of B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) and B-Cell Non-Hodgkin Lymphoma (B-NHL) in Children. Blood, 2019, 134, 1341-1341.	1.4	2
35	S1635 ACADEMIC, PHASE1 TRIAL ON T CELLS EXPRESSING BOTH CD19 CHIMERIC ANTIGEN RECEPTOR AND INDUCIBLE CASPASE 9 SAFETY SWITCH FOR TREATMENT OF CHILDHOOD ACUTE LYMPHOBLASTIC LEUKAEMIA AND NONâ€HODGKIN LYMPHOMA. HemaSphere, 2019, 3, 755.	2.7	1
36	A New Promising Third Generation CAR-CD30 T-Cell Therapy for CD30+ Lymphoma. Blood, 2019, 134, 2069-2069.	1.4	1

BIAGIO DE ANGELIS

#	Article	IF	CITATIONS
37	Adoptive Immunotherapy Using PRAME-Specific T Cells in Medulloblastoma. Cancer Research, 2018, 78, 3337-3349.	0.9	64
38	Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncolmmunology, 2018, 7, e1433518.	4.6	120
39	Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. OncoImmunology, 2018, 7, e1378843.	4.6	88
40	CD19 Redirected CAR NK Cells Are Equally Effective but Less Toxic Than CAR T Cells. Blood, 2018, 132, 3491-3491.	1.4	8
41	Patient-Derived Chimeric Antigen Receptor T-Cell Production Based on a Gammaretroviral Vector Platform Is Not Associated with Generation of CAR+ Leukemia Blasts. Blood, 2018, 132, 2204-2204.	1.4	0
42	Zoledronic acid boosts Î ³ δT-cell activity in children receiving αβ ⁺ T and CD19 ⁺ cell-depleted grafts from an HLA-haplo-identical donor. Oncolmmunology, 2017, 6, e1216291.	4.6	76
43	MB-64ADOPTIVE CELL IMMUNOTHERAPY IN MEDULLOBLASTOMA BASED ON T CELLS REDIRECTED TOWARD TUMOR CELLS BY PRAME SPECIFIC $\hat{1}\pm\hat{1}^2$ TCR GENE MODIFICATION. Neuro-Oncology, 2016, 18, iii111.3-iii111.	1.2	0
44	Overcoming Challenges in CAR T-cell Product CGMP Release. Molecular Therapy, 2016, 24, 845-846.	8.2	25
45	Clinical Outcome and Immune Recovery after Adoptive Infusion of BPX-501 Cells (donor T cells) Tj ETQq1 1 0.78 Given α/β T-Cell Depleted HLA-Haploidentical Stem Cell Transplantation (HSCT). Blood, 2016, 128, 2286-2286.	4314 rgB 1.4	T /Overlock 1 0
46	Zoledronic Acid Boosts γδT-Cell Activity in Children Receiving αβ+ T and CD19+ CELL-Depleted Grafts from a Haplo-Identical DONOR. Blood, 2016, 128, 5771-5771.	1.4	0
47	WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene. Oncotarget, 2015, 6, 28223-28237.	1.8	17
48	Bone Marrow (BM) Microenviroment Factors As Early Markers of Response in Patients with Newly Diagnosed Chronic Phase Chronic Myelogenous Leukemia (CML-CP) Treated with Nilotinib. Blood, 2015, 126, 1570-1570.	1.4	0
49	Selective strong synergism of Ruxolitinib and second generation tyrosine kinase inhibitors to overcome bone marrow stroma related drug resistance in chronic myelogenous leukemia. Leukemia Research, 2014, 38, 236-242.	0.8	24
50	Evaluation of Cepheid Xpert® BCR-ABL Monitor Assay in Three Italian Reference Centers for Monitoring of BCR-ABL Transcript Levels in CML Patients. Blood, 2014, 124, 1809-1809.	1.4	2
51	A Novel Score to Predict Interferon-Alpha Therapy Responsiveness in Patients with Essential Thrombocythemia. Blood, 2014, 124, 1850-1850.	1.4	0
52	Interleukin 15 Provides Relief to CTLs from Regulatory T Cell–Mediated Inhibition: Implications for Adoptive T Cell–Based Therapies for Lymphoma. Clinical Cancer Research, 2013, 19, 106-117.	7.0	68
53	The Interferon Score Towards Interferon Alpha Tailored Therapy In Essential Thrombocythemia. Blood, 2013, 122, 4073-4073.	1.4	0
54	Analysis of Bone Marrow Microenviroment Factors As Early Markers of Response in Patients with Newly Diagnosed Bcr-Abl Positive CML in Chronic Phase Treated with Nilotinib Blood, 2012, 120, 2795-2795.	1.4	1

BIAGIO DE ANGELIS

#	Article	IF	CITATIONS
55	High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood, 2011, 117, 3353-3362.	1.4	100
56	Gene Therapy to Improve Migration of T Cells to the Tumor Site. Methods in Molecular Biology, 2010, 651, 103-118.	0.9	9
57	Generation Of Virus-Specific Cytotoxic T Lymphocytes (CTLS) Resistant to the Immunosuppressive Drug Tacrolimus (FK506). Biology of Blood and Marrow Transplantation, 2009, 15, 135.	2.0	2
58	T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood, 2009, 113, 6392-6402.	1.4	458
59	Generation of Epstein-Barr virus–specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood, 2009, 114, 4784-4791.	1.4	86
60	IL15 Enhances Proliferation and Effector Function of Antigen-Specific Cytotoxic T Lymphocytes (CTLs) and Mitigates the Suppressive Action of Regulatory T Cells (Tregs) Blood, 2009, 114, 4088-4088.	1.4	1
61	Imatinib mesylate therapy in chronic myeloid leukemia patients in stable complete cytogenic response after interferon-alpha results in a very high complete molecular response rate. Leukemia Research, 2008, 32, 255-261.	0.8	13
62	Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood, 2008, 112, 1876-1885.	1.4	106
63	Polyclonal PRAME-Specific Cytotoxic T Lymphocytes Generated Using Protein-Spanning Pools of Overlapping Pentadecapeptides Target Chronic Myeloid Leukemia. Blood, 2008, 112, 3899-3899.	1.4	0
64	Preferentially Expressed Antigen of Melanoma (PRAME)-Specific Cytotoxic T-Lymphocytes (CTLs) and Transgenic T Cells To Target Chronic Myelogenous Leukemia (CML) Blood, 2007, 110, 2761-2761.	1.4	10
65	Imatinib Mesylate Therapy in Late Ph+ Chronic Myeloid Leukemia Patients in Stable Complete Cytogenetic Response after Interferon-Alpha Results in a Very High Complete Molecular Response Rate Blood, 2006, 108, 2158-2158.	1.4	0