Karen English

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6191469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Helminth antigens modulate human PBMCs, attenuating disease progression in a humanised mouse model of graft versus host disease. Experimental Parasitology, 2022, 235, 108231.	1.2	0
2	Cyclosporine A and IFNÎ ³ licencing enhances human mesenchymal stromal cell potency in a humanised mouse model of acute graft versus host disease. Stem Cell Research and Therapy, 2021, 12, 238.	5.5	9
3	Healthy <i>versus</i> inflamed lung environments differentially affect mesenchymal stromal cells. European Respiratory Journal, 2021, 58, 2004149.	6.7	20
4	Research Progress on Strategies that can Enhance the Therapeutic Benefits of Mesenchymal Stromal Cells in Respiratory Diseases With a Specific Focus on Acute Respiratory Distress Syndrome and Other Inflammatory Lung Diseases. Frontiers in Pharmacology, 2021, 12, 647652.	3.5	9
5	Drug delivery formulation impacts cyclosporine efficacy in a humanised mouse model of acute graft versus host disease. Transplant Immunology, 2021, 65, 101373.	1.2	3
6	IFN-γ and PPARÎ′ Influence the Efficacy and Retention of Multipotent Adult Progenitor Cells in Graft vs Host Disease. Stem Cells Translational Medicine, 2021, 10, 1561-1574.	3.3	6
7	The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells, 2021, 10, 2982.	4.1	12
8	Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L908-L925.	2.9	20
9	The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Frontiers in Immunology, 2019, 10, 1228.	4.8	72
10	Multipotent Adult Progenitor Cells Suppress T Cell Activation in In Vivo Models of Homeostatic Proliferation in a Prostaglandin E2-Dependent Manner. Frontiers in Immunology, 2018, 9, 645.	4.8	16
11	The Immune Response to the Allograft. , 2017, , 235-246.		0
12	Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Scientific Reports, 2016, 6, 38207.	3.3	68
13	Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis. Stem Cells Translational Medicine, 2016, 5, 1307-1318.	3.3	92
14	Mesenchymal stem cells to promote islet transplant survival. Current Opinion in Organ Transplantation, 2016, 21, 568-573.	1.6	13
15	Linocin and OmpW Are Involved in Attachment of the Cystic Fibrosis-Associated Pathogen Burkholderia cepacia Complex to Lung Epithelial Cells and Protect Mice against Infection. Infection and Immunity, 2016, 84, 1424-1437.	2.2	41
16	Mesenchymal Stromal Cells Protect Against Caspase 3-Mediated Apoptosis of CD19 ⁺ Peripheral B Cells Through Contact-Dependent Upregulation of VEGF. Stem Cells and Development, 2015, 24, 2391-2402.	2.1	38
17	Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Research and Therapy, 2015, 6, 19.	5.5	105
18	Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2. Molecular Therapy, 2015, 23, 1783-1793.	8.2	40

Karen English

#	Article	IF	CITATIONS
19	Stem Cell-Based Approach to Immunomodulation. , 2014, , 855-864.		0
20	Stem Cell Transplantation for Muscular Dystrophy: The Challenge of Immune Response. BioMed Research International, 2014, 2014, 1-12.	1.9	37
21	Concise review: Adult mesenchymal stromal cell therapy for inflammatory diseases: How well are we joining the dots?. Stem Cells, 2013, 31, 2033-2041.	3.2	124
22	Mesoangioblasts Suppress T Cell Proliferation Through IDO and PGE-2-Dependent Pathways. Stem Cells and Development, 2013, 22, 512-523.	2.1	28
23	Mechanisms of mesenchymal stromal cell immunomodulation. Immunology and Cell Biology, 2013, 91, 19-26.	2.3	434
24	Human mesenchymal stem cells suppress donor CD4+ T cell proliferation and reduce pathology in a humanized mouse model of acute graft- <i>versus</i> -host disease. Clinical and Experimental Immunology, 2013, 172, 333-348.	2.6	107
25	IFN-γ Stimulated Human Umbilical-Tissue-Derived Cells Potently Suppress NK Activation and Resist NK-Mediated Cytotoxicity In Vitro. Stem Cells and Development, 2013, 22, 3003-3014.	2.1	111
26	Mesenchymal Stromal Cells in Transplantation Rejection and Tolerance. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015560-a015560.	6.2	83
27	Human iPSC-derived mesoangioblasts, like their tissue-derived counterparts, suppress T cell proliferation through IDO- and PGE-2-dependent pathways. F1000Research, 2013, 2, 24.	1.6	9
28	Mesenchymal Stromal Cells; Role in Tissue Repair, Drug Discovery and Immune Modulation. Current Drug Delivery, 2013, 11, 561-571.	1.6	27
29	Addressing the Challenge of Autoimmunity in the Treatment of Diabetes with Stem Cells. , 2013, , 313-329.		0
30	Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Current Opinion in Organ Transplantation, 2011, 16, 90-95.	1.6	54
31	Intervertebral Disc Repair: Mesenchymal Stem Cells to the Rescue?. Transplantation, 2011, 92, 733-734.	1.0	4
32	Mesenchymal stem cell inhibition of Tâ€helper 17 cell―differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor. European Journal of Immunology, 2011, 41, 2840-2851.	2.9	193
33	Allogeneic mesenchymal stem cells: Agents of immune modulation. Journal of Cellular Biochemistry, 2011, 112, 1963-1968.	2.6	122
34	Attenuated <i>Bordetella pertussis</i> vaccine strain BPZE1 modulates allergenâ€induced immunity and prevents allergic pulmonary pathology in a murine model. Clinical and Experimental Allergy, 2010, 40, 933-941.	2.9	30
35	Mesenchymal Stromal Cells: Facilitators of Successful Transplantation?. Cell Stem Cell, 2010, 7, 431-442.	11.1	273
36	A Live Attenuated Bordetella pertussis Candidate Vaccine Does Not Cause Disseminating Infection in Gamma Interferon Receptor Knockout Mice. Vaccine Journal, 2009, 16, 1344-1351.	3.1	39

Karen English

#	Article	IF	CITATIONS
37	Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25Highforkhead box P3+ regulatory T cells. Clinical and Experimental Immunology, 2009, 156, 149-160.	2.6	595
38	Regulation of Surfactant Protein B Gene Expression in Bone Marrow-Derived Cells. Stem Cells, 2009, 27, 662-669.	3.2	2
39	Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunology Letters, 2008, 115, 50-58.	2.5	243
40	IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells. Immunology Letters, 2007, 110, 91-100.	2.5	372
41	Interleukin-10 (IL-10) but not Lipopolysaccharide (LPS) produces increased motor activity and abnormal exploratory patterns while impairing spatial learning in Balb/c mice. Physiology and Behavior, 2006, 87, 842-847.	2.1	23
42	Inflammation of the respiratory tract is associated with CCL28 and CCR10 expression in a murine model of allergic asthma. Immunology Letters, 2006, 103, 92-100.	2.5	29
43	Immunogenicity of Adult Mesenchymal Stem Cells: Lessons from the Fetal Allograft. Stem Cells and Development, 2005, 14, 252-265.	2.1	179
44	Translating MSC Therapy in the Age of Obesity. Frontiers in Immunology, 0, 13, .	4.8	12