Muthiah Manoharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6190867/publications.pdf

Version: 2024-02-01

107 papers 18,644 citations

44069 48 h-index 24982 109 g-index

113 all docs

113 docs citations

113 times ranked

13604 citing authors

#	Article	IF	CITATIONS
1	Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 2004, 432, 173-178.	27.8	2,039
2	Rational design of cationic lipids for siRNA delivery. Nature Biotechnology, 2010, 28, 172-176.	17.5	1,366
3	RNAi-mediated gene silencing in non-human primates. Nature, 2006, 441, 111-114.	27.8	1,275
4	Sequence-specific potent induction of IFN- \hat{l}_{\pm} by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine, 2005, 11, 263-270.	30.7	1,153
5	A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnology, 2008, 26, 561-569.	17.5	1,076
6	RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology, 2006, 2, 711-719.	8.0	968
7	Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology, 2007, 25, 1149-1157.	17.5	854
8	Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing Inâ€Vivo**. Angewandte Chemie - International Edition, 2012, 51, 8529-8533.	13.8	843
9	Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms. Molecular Therapy, 2010, 18, 1357-1364.	8.2	831
10	Multivalent <i>N</i> -Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing. Journal of the American Chemical Society, 2014, 136, 16958-16961.	13.7	825
11	The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nature Nanotechnology, 2019, 14, 1084-1087.	31.5	814
12	Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nature Biotechnology, 2015, 33, 870-876.	17.5	424
13	Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics. Molecular Therapy, 2013, 21, 1570-1578.	8.2	392
14	RNA interference and chemically modified small interfering RNAs. Current Opinion in Chemical Biology, 2004, 8, 570-579.	6.1	337
15	Development of Lipidoid–siRNA Formulations for Systemic Delivery to the Liver. Molecular Therapy, 2009, 17, 872-879.	8.2	312
16	2′-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1489, 117-130.	2.4	294
17	An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nature Medicine, 2015, 21, 492-497.	30.7	247
18	Advanced siRNA Designs Further Improve InÂVivo Performance of GalNAc-siRNA Conjugates. Molecular Therapy, 2018, 26, 708-717.	8.2	202

#	Article	IF	CITATIONS
19	Influenza A virus-generated small RNAs regulate the switch from transcription to replication. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11525-11530.	7.1	186
20	Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Research, 2017, 45, 10969-10977.	14.5	179
21	siRNA Conjugates Carrying Sequentially Assembled Trivalent <i>N-</i> Acetylgalactosamine Linked Through Nucleosides Elicit Robust Gene Silencing <i>In Vivo</i> in Hepatocytes. ACS Chemical Biology, 2015, 10, 1181-1187.	3.4	173
22	Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nature Communications, 2018, 9, 723.	12.8	173
23	Oligonucleotide Conjugates as Potential Antisense Drugs with Improved Uptake, Biodistribution, Targeted Delivery, and Mechanism of Action. Oligonucleotides, 2002, 12, 103-128.	4.3	170
24	Crystal structure and improved antisense properties of 2'-O-(2-methoxyethyl)-RNA. Nature Structural Biology, 1999, 6, 535-539.	9.7	155
25	Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Research, 2011, 39, 3482-3495.	14.5	153
26	Hepatocyteâ€Specific Delivery of siRNAs Conjugated to Novel Nonâ€nucleosidic Trivalent <i>N</i> â€Acetylgalactosamine Elicits Robust Gene Silencing in Vivo. ChemBioChem, 2015, 16, 903-908.	2.6	151
27	Unique Geneâ€Silencing and Structural Properties of 2′â€Fluoroâ€Modified siRNAs. Angewandte Chemie - International Edition, 2011, 50, 2284-2288.	13.8	147
28	Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature, 2007, 449, 745-747.	27.8	145
29	Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Research, 2020, 48, 11827-11844.	14.5	137
30	X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. Biopolymers, 1998, 48, 234.	2.4	120
31	Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathogens, 2017, 13, e1006474.	4.7	113
32	Preclinical Development of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification. Molecular Therapy - Nucleic Acids, 2015, 4, e263.	5.1	107
33	Re-Engineering RNA Molecules into Therapeutic Agents. Accounts of Chemical Research, 2019, 52, 1036-1047.	15.6	106
34	Probing the Influence of Stereoelectronic Effects on the Biophysical Properties of Oligonucleotides: Comprehensive Analysis of the RNA Affinity, Nuclease Resistance, and Crystal Structure of Ten 2â€~-O-Ribonucleic Acid Modifications,. Biochemistry, 2005, 44, 9045-9057.	2.5	104
35	5′â€(<i>E</i>)â€Vinylphosphonate: A Stable Phosphate Mimic Can Improve the RNAi Activity of siRNA–GalNa Conjugates. ChemBioChem, 2016, 17, 985-989.	Ας 2.6	95
36	Gene Silencing Activity of siRNAs with a Ribo-difluorotoluyl Nucleotide. ACS Chemical Biology, 2006, 1, 176-183.	3.4	81

#	Article	IF	Citations
37	Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nature Biotechnology, 2022, 40, 1500-1508.	17.5	79
38	Non-Nucleoside Building Blocks for Copper-Assisted and Copper-Free Click Chemistry for the Efficient Synthesis of RNA Conjugates. Organic Letters, 2010, 12, 5410-5413.	4.6	75
39	2′â€Fluoro RNA Shows Increased Watson–Crick Hâ€Bonding Strength and Stacking Relative to RNA: Evidence from NMR and Thermodynamic Data. Angewandte Chemie - International Edition, 2012, 51, 11863-11866.	13.8	73
40	Chirality Dependent Potency Enhancement and Structural Impact of Glycol Nucleic Acid Modification on siRNA. Journal of the American Chemical Society, 2017, 139, 8537-8546.	13.7	64
41	Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. Journal of Controlled Release, 2010, 144, 227-232.	9.9	62
42	siRNA carrying an (E)-vinylphosphonate moiety at the $5\hat{l}_{n}$, end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Research, 2017, 45, 3528-3536.	14.5	59
43	Reversal of siRNA-mediated gene silencing in vivo. Nature Biotechnology, 2018, 36, 509-511.	17.5	58
44	Modulation of thermal stability can enhance the potency of siRNA. Nucleic Acids Research, 2010, 38, 7320-7331.	14.5	57
45	Efficient Solid-Phase Chemical Synthesis of 5′-Triphosphates of DNA, RNA, and their Analogues. Organic Letters, 2010, 12, 2190-2193.	4.6	56
46	Safety evaluation of 2′-deoxy-2′-fluoro nucleotides in GalNAc-siRNA conjugates. Nucleic Acids Research, 2019, 47, 3306-3320.	14.5	54
47	4′- <i>C</i> -Methoxy-2′-deoxy-2′-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing. Journal of the American Chemical Society, 2017, 139, 14542-14555.	13.7	49
48	Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme. Nucleic Acids Research, 2007, 35, 6424-6438.	14.5	48
49	Allyl Group as a Protecting Group for Internucleotide Phosphate and Thiophosphate Linkages in Oligonucleotide Synthesis:  Facile Oxidation and Deprotection Conditions. Organic Letters, 2000, 2, 243-246.	4.6	45
50	The Nonclinical Disposition and Pharmacokinetic/Pharmacodynamic Properties of <i>N</i> -Acetylgalactosamine–Conjugated Small Interfering RNA Are Highly Predictable and Build Confidence in Translation to Human. Drug Metabolism and Disposition, 2022, 50, 781-797.	3.3	44
51	Zwitterionic oligonucleotides with 2′-O-[3-(N,N-dimethylamino)propyl]-RNA modification: synthesis and properties. Tetrahedron Letters, 2000, 41, 4855-4859.	1.4	42
52	Lipid Nanoparticles Improve Activity of Single-Stranded siRNA and Gapmer Antisense Oligonucleotides in Animals. ACS Chemical Biology, 2013, 8, 1402-1406.	3.4	41
53	Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters. Nucleic Acids Research, 2010, 38, 5242-5259.	14.5	39
54	N-(2-Cyanoethoxycarbonyloxy)succinimide:Â A New Reagent for Protection of Amino Groups in Oligonucleotides. Journal of Organic Chemistry, 1999, 64, 6468-6472.	3.2	38

#	Article	IF	CITATIONS
55	Structural Basis of Duplex Thermodynamic Stability and Enhanced Nuclease Resistance of 5′- <i>C</i> -Methyl Pyrimidine-Modified Oligonucleotides. Journal of Organic Chemistry, 2016, 81, 2261-2279.	3.2	36
56	Facile Synthesis, Geometry, and 2′-Substituent-Dependent in Vivo Activity of 5′-(<i>E</i>)- and 5′-(<i>Z</i>)-Vinylphosphonate-Modified siRNA Conjugates. Journal of Medicinal Chemistry, 2018, 61, 734-744.	6.4	36
57	The RNA-binding protein vigilin regulates VLDL secretion through modulation of Apob mRNA translation. Nature Communications, 2016, 7, 12848.	12.8	34
58	2â€~O-[2-(Methylthio)ethyl]-Modified Oligonucleotide: An Analogue of 2â€~O-[2-(Methoxy)-ethyl]-Modified Oligonucleotide with Improved Protein Binding Properties and High Binding Affinity to Target RNAâ€. Biochemistry, 2002, 41, 11642-11648.	2.5	33
59	Structural basis for the synergy of $4\hat{a}\in^2$ - and $2\hat{a}\in^2$ -modifications on siRNA nuclease resistance, thermal stability and RNAi activity. Nucleic Acids Research, 2018, 46, 8090-8104.	14.5	32
60	Chirality matters: stereo-defined phosphorothioate linkages at the termini of small interfering RNAs improve pharmacology <i>in vivo</i> . Nucleic Acids Research, 2022, 50, 1221-1240.	14.5	29
61	Challenges and Opportunities for Nucleic Acid Therapeutics. Nucleic Acid Therapeutics, 2022, 32, 8-13.	3.6	29
62	From bench to bedside: Improving the clinical safety of GalNAc–siRNA conjugates using seed-pairing destabilization. Nucleic Acids Research, 2022, 50, 6656-6670.	14.5	28
63	Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc–siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5′-exonuclease. Nucleic Acids Research, 2020, 48, 4028-4040.	14.5	27
64	Synthesis of 2â€~-O-[2-[(N,N-Dimethylamino)oxy]ethyl] Modified Nucleosides and Oligonucleotides. Journal of Organic Chemistry, 2002, 67, 357-369.	3.2	24
65	Synthesis of Chimeric Oligonucleotides Containing Phosphodiester, Phosphorothioate, and Phosphoramidate Linkages. Organic Letters, 2000, 2, 1819-1822.	4.6	23
66	Stabilizing contributions of sulfur-modified nucleotides: crystal structure of a DNA duplex with 2'-O-[2-(methoxy)ethyl]-2-thiothymidines. Nucleic Acids Research, 2005, 33, 5297-5307.	14.5	23
67	Synthesis, hybridization, and nuclease resistance properties of 2′-O-aminooxyethyl (2′-O-AOE) modified oligonucleotides. Tetrahedron Letters, 1999, 40, 661-664.	1.4	22
68	Structural Basis for Recognition of Guanosine by a Synthetic Tricyclic Cytosine Analogue: Guanidinium G-Clamp. Helvetica Chimica Acta, 2003, 86, 966-978.	1.6	22
69	Synthesis and characterization of oligonucleotides containing conformationally constrained bicyclo[3.1.0]hexane pseudosugar analogs. Nucleic Acids Research, 2004, 32, 3642-3650.	14.5	22
70	2'-O-[2-[(N,N-dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo. Nucleic Acids Research, 2004, 32, 828-833.	14.5	22
71	5′-Morpholino modification of the sense strand of an siRNA makes it a more effective passenger. Chemical Communications, 2019, 55, 5139-5142.	4.1	21
72	A conformational transition in the structure of a $2\hat{a}\in^2$ -thiomethyl-modified DNA visualized at high resolution. Chemical Communications, 2009, , 2017.	4.1	19

#	Article	IF	Citations
73	Solidâ€Phase Chemical Synthesis of 5′â€Triphosphate DNA, RNA, and Chemically Modified Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2012, 50, Unit1.28.	0.5	19
74	5′- <i>C</i> -Malonyl RNA: Small Interfering RNAs Modified with 5′-Monophosphate Bioisostere Demonstrate Gene Silencing Activity. ACS Chemical Biology, 2016, 11, 953-960.	3.4	19
75	Receptor-Specific Delivery of Peptide Nucleic Acids Conjugated to Three Sequentially Linked https://www.liv-Acetyl-Galactosamine-Moieties into Hepatocytes. Journal of Organic Chemistry, 2020, 85, 8812-8824.	3.2	19
76	RNA interference and chemically modified siRNAs. Nucleic Acids Symposium Series, 2003, 3, 115-116.	0.3	17
77	Automated parallel synthesis of $5\hat{a} \in \mathbb{Z}^2$ -triphosphate oligonucleotides and preparation of chemically modified $5\hat{a} \in \mathbb{Z}^2$ -triphosphate small interfering RNA. Bioorganic and Medicinal Chemistry, 2013, 21, 722-732.	3.0	17
78	Reversed-phase high-performance liquid chromatography method for simultaneous analysis of two liposome-formulated short interfering RNA duplexes. Analytical Biochemistry, 2010, 401, 61-67.	2.4	15
79	An efficient deprotection method for 5′-[O,O-bis(pivaloyloxymethyl)]-(E)-vinylphosphonate containing oligonucleotides. Tetrahedron, 2018, 74, 6182-6186.	1.9	15
80	Synthesis, chirality-dependent conformational and biological properties of siRNAs containing $5\hat{a} \in (R)$ -and $5\hat{a} \in (S)$ -C-methyl-guanosine. Nucleic Acids Research, 2020, 48, 10101-10124.	14.5	15
81	Synthesis and Biophysical Characterization of RNAs Containing 2′-Fluorinated Northern Methanocarbacyclic Nucleotides. Organic Letters, 2019, 21, 1963-1967.	4.6	14
82	2â€-O-{2-[N,N-(Dialkyl)aminooxy]ethyl}- Modified Antisense Oligonucleotides. Organic Letters, 2000, 2, 3995-3998.	4.6	13
83	Overcoming GNA/RNA base-pairing limitations using isonucleotides improves the pharmacodynamic activity of ESC+ÂGalNAc-siRNAs. Nucleic Acids Research, 2021, 49, 10851-10867.	14.5	13
84	siRNAs containing 2′-fluorinated <i>Northern</i> -methanocarbacyclic (2′-F-NMC) nucleotides: <i>in vitro</i> and <i>in vivo</i> RNAi activity and inability of mitochondrial polymerases to incorporate 2′-F-NMCÂNTPs. Nucleic Acids Research, 2021, 49, 2435-2449.	14.5	12
85	Synthesis of 2′-O-[2-[(N,N-dialkylamino)oxy]ethyl]-modified oligonucleotides: hybridization affinity, resistance to nuclease, and protein binding characteristics. Tetrahedron, 2003, 59, 7413-7422.	1.9	11
86	Improving Antisense Oligonucleotide Binding to Human Serum Albumin: Dramatic Effect of Ibuprofen Conjugation. ChemBioChem, 2002, 3, 1257-1260.	2.6	10
87	An immobilized and reusable Cu(i) catalyst for metal ion-free conjugation of ligands to fully deprotected oligonucleotides through click reaction. Chemical Communications, 2013, 49, 184-186.	4.1	10
88	$2\hat{a}\in^2$ - and $3\hat{a}\in^2$ - Cholesterol-Conjugated Adenosine and Cytosine Nucleoside Building Blocks: Synthesis of Lipidic Nucleic Acids. Nucleosides & Nucleotides, 1997, 16, 1141-1143.	0.5	9
89	Molecular dynamics correctly models the unusual major conformation of the GAGU RNA internal loop and with NMR reveals an unusual minor conformation. Rna, 2018, 24, 656-672.	3.5	9
90	$2\hat{a}\in^2$ -DMAOE RNA: Emerging Oligonucleotides with Promising Antisense Properties. Nucleosides & Nucleotides, 1999, 18, 1381-1382.	0.5	8

#	Article	IF	Citations
91	Selective Phosphate Protection:  A Novel Synthesis of Double-Labeled Oligonucleotides. Organic Letters, 2001, 3, 3071-3074.	4.6	8
92	Small circular interfering RNAs (sciRNAs) as a potent therapeutic platform for gene-silencing. Nucleic Acids Research, 2021, 49, 10250-10264.	14.5	7
93	Carbohydrate Modifications in Antisense Oligonucleotide Therapy: New Kids on the Block. Nucleosides & Nucleotides, 1999, 18, 1737-1746.	0.5	6
94	Incorporating a Thiophosphate Modification into a Common RNA Tetraloop Motif Causes an Unanticipated Stability Boost. Biochemistry, 2020, 59, 4627-4637.	2.5	6
95	Liver-targeted RNAi Therapeutics: Principles and Applications. RSC Drug Discovery Series, 2019, , 233-265.	0.3	5
96	A NOVEL PROTECTING STRATEGY FOR INTERNUCLEOSIDIC PHOSPHATE AND PHOSPHOROTHIOATE GROUPS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1011-1014.	1.1	4
97	CHIMERIC RNA WITH MODIFIED BACKBONES: ALTERNATING METHYLENE(METHYLIMINO) LINKED PHOSPHODIESTER BACKBONE OLIGONUCLEOTIDES WITH 2′-OH AND 2′-OMe GROUPS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 995-997.	1.1	4
98	Aminooxy Click Chemistry as a Tool for Bis-homo and Bis-hetero Ligand Conjugation to Nucleic Acids. Organic Letters, 0, , .	4.6	4
99	A New Protecting Group Strategy for Amino Groups in Oligonucleotide Chemistry: CEOC Group. Nucleosides & Nucleotides, 1999, 18, 1199-1201.	0.5	3
100	RNAs Containing Carbocyclic Ribonucleotides. Organic Letters, 2022, 24, 525-530.	4.6	3
101	Use of [4,6-Di- ¹⁴ C]-5′-DMT-thymidine Phosphoramidite Reagent for the Radiolabeling of Synthetic Oligonucleotides. Nucleosides & Nucleotides, 1999, 18, 1389-1390.	0.5	1
102	NMI Linkage Modification Increases Potency and Stability of H-RASAntisense Oligonucleotides. Nucleosides & Nucleotides, 1999, 18, 1383-1384.	0.5	1
103	Synthesis of Oligonucleotide Conjugates with the Aid of (i>N Phosphoramidite Reagent. Nucleosides & Nucleotides, 1999, 18, 1455-1456.	0.5	1
104	SYNTHESIS OF CHIMERIC OLIGONUCLEOTIDES CONTAINING INTERNUCLEOSIDIC PHOSPHODIESTER ANDSâ \in "PIVALOYLTHIOETHYL PHOSPHOTRIESTER RESIDUES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1015-1018.	1.1	1
105	Properties of Parallel Tetramolecular G-Quadruplex Carrying N-Acetylgalactosamine as Potential Enhancer for Oligonucleotide Delivery to Hepatocytes. Molecules, 2022, 27, 3944.	3.8	1
106	EFFICIENT SYNTHESIS OF OLIGONUCLEOTIDE-PEPTIDE CONJUGATES ON LARGE SCALE. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1007-1010.	1.1	0
107	Synthesis of 2′â€Fluorinated Northern Methanocarbacyclic (2′â€Fâ€NMC) Nucleosides and Their Incorporation Into Oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 2020, 80, e103.	0.5	0