
Nuno M R Peres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6189779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the hybridization of plasmons in graphene with 2D superconductor collective modes. Journal of Physics Condensed Matter, 2022, 34, 105304.	1.8	1
2	Absorption and optical selection rules of tunable excitons in biased bilayer graphene. Physical Review B, 2022, 105, .	3.2	9
3	Excitonic response of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>AA</mml:mi>and AB stacked hBN bilayers. Physical Review B, 2022, 105, .</mml:mrow></mml:msup></mml:math 	ר ®\⊉ > < m	ml a mo>′<
4	Theoretical Methods for Excitonic Physics in 2D Materials. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	10
5	Laser induced enhanced coupling between photons and squeezed magnons in antiferromagnets. Journal of Physics Condensed Matter, 2022, 34, 245802.	1.8	2
6	Tunable excitons in rhombohedral trilayer graphene. Physical Review B, 2022, 105, .	3.2	4
7	Theoretical Methods for Excitonic Physics in 2D Materials. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	1
8	Exciton energies and wave functions in hexagonal boron nitride using Miller and Good's uniform approach. European Physical Journal B, 2021, 94, 1.	1.5	0
9	Ionization rate and Stark shift of a one-dimensional model of the hydrogen molecular ion. European Journal of Physics, 2021, 42, 025403.	0.6	1
10	Harnessing ultraconfined graphene plasmons to probe the electrodynamics of superconductors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
11	Exciton-polariton mediated interaction between two nitrogen-vacancy color centers in diamond using two-dimensional transition metal dichalcogenides. Physical Review B, 2021, 103, .	3.2	5
12	Perturbative approach to the polaron shift of excitons in transition metal dichalcogenides. Physical Review B, 2021, 103, .	3.2	3
13	Topological Graphene Plasmons in a Plasmonic Realization of the Su–Schrieffer–Heeger Model. ACS Photonics, 2021, 8, 1817-1823.	6.6	15
14	The polarizability of a confined atomic system: an application of the Dalgarno–Lewis method. European Journal of Physics, 2021, 42, 045407.	0.6	2
15	Calculation of the nonlinear response functions of intraexciton transitions in two-dimensional transition metal dichalcogenides. Physical Review B, 2021, 103, .	3.2	8
16	Quantum surface-response of metals revealed by acoustic graphene plasmons. Nature Communications, 2021, 12, 3271.	12.8	27
17	Analytical description of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mi>s</mml:mi> exciton linewidth temperature dependence in transition metal dichalcogenides. Physical Review B, 2021, 103, .</mml:math 	3.2	8
18	Theoretical model of the polarizability due to transitions between exciton states in transition metal dichalcogenides: application to WSe ₂ . Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2065.	2.1	6

#	Article	IF	CITATIONS
19	Quantum Surface-Response of Metals Probed by Graphene Plasmons. , 2021, , .		Ο
20	Plasmonic response of a nanorod in the vicinity of a metallic surface: local approach with analytical solution. Journal of Optics (United Kingdom), 2021, 23, 085002.	2.2	0
21	Two-level systems coupled to Graphene plasmons: A Lindblad equation approach. International Journal of Modern Physics B, 2021, 35, 2130007.	2.0	3
22	Localized polariton states in a photonic crystal intercalated by a transition metal dichalcogenide monolayer. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C225.	2.1	1
23	Quantum Nanophotonics in Two-Dimensional Materials. ACS Photonics, 2021, 8, 85-101.	6.6	83
24	Third-order polarizability of interlayer excitons in heterobilayers. Physical Review B, 2021, 104, .	3.2	3
25	Magneto-optical Kerr effect in spin split two-dimensional massive Dirac materials. 2D Materials, 2020, 7, 025011.	4.4	21
26	Optical absorption of single-layer hexagonal boron nitride in the ultraviolet. Journal of Physics Condensed Matter, 2020, 32, 025304.	1.8	28
27	Fresnel polarisation of infra-red radiation by elemental bismuth. European Physical Journal B, 2020, 93, 1.	1.5	0
28	Nonreciprocal magnons in a two-dimensional crystal with out-of-plane magnetization. Physical Review B, 2020, 102, .	3.2	12
29	Understanding the Electromagnetic Response of Graphene/Metallic Nanostructures Hybrids of Different Dimensionality. ACS Photonics, 2020, 7, 2302-2308.	6.6	15
30	Anisotropic Stark shift, field-induced dissociation, and electroabsorption of excitons in phosphorene. Physical Review B, 2020, 102, .	3.2	10
31	A colloquium on the variational method applied to excitons in 2D materials. European Physical Journal B, 2020, 93, 1.	1.5	10
32	Surface-Plasmon-Polariton-Assisted Diffraction of THz Waves on a Graphene-Covered Slit. , 2020, , .		0
33	Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Materials, 2020, 7, 035031.	4.4	32
34	Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science, 2020, 368, 1219-1223.	12.6	114
35	Quantization of graphene plasmons. Physical Review A, 2020, 101, .	2.5	20
36	Analytical quantitative semiclassical approach to the Lo Surdo–Stark effect and ionization in two-dimensional excitons. Physical Review B, 2020, 102, .	3.2	5

#	Article	IF	CITATIONS
37	Excitation of localized graphene plasmons by a metallic slit. Physical Review B, 2020, 101, .	3.2	7
38	Excitons in phosphorene: A semi-analytical perturbative approach. Physical Review B, 2020, 101, .	3.2	16
39	Excitonic magneto-optical Kerr effect in two-dimensional transition metal dichalcogenides induced by spin proximity. Physical Review B, 2020, 101, .	3.2	24
40	Topological photonic Tamm states and the Su-Schrieffer-Heeger model. Physical Review A, 2020, 101, .	2.5	29
41	Near-Unity Light Absorption in a Monolayer WS ₂ Van der Waals Heterostructure Cavity. Nano Letters, 2020, 20, 3545-3552.	9.1	48
42	Exciton–polaritons of a 2D semiconductor layer in a cylindrical microcavity. Journal of Applied Physics, 2020, 127, 133101.	2.5	8
43	Topological magnons in Crl ₃ monolayers: an itinerant fermion description. 2D Materials, 2020, 7, 045031.	4.4	45
44	Propagation of surface plasmons on plasmonic Bragg gratings. Journal of Applied Physics, 2019, 125, .	2.5	6
45	Hybrid plasmon-magnon polaritons in graphene-antiferromagnet heterostructures. 2D Materials, 2019, 6, 045003.	4.4	13
46	Optical orientation with linearly polarized light in transition metal dichalcogenides. Physical Review B, 2019, 99, .	3.2	18
47	Two-dimensional materials in the presence of nonplanar interfaces. Physical Review B, 2019, 99, .	3.2	2
48	Excitonic magneto-optics in monolayer transition metal dichalcogenides: From nanoribbons to two-dimensional response. Physical Review B, 2019, 100, .	3.2	5
49	Monolayer transition metal dichalcogenides in strong magnetic fields: Validating the Wannier model using a microscopic calculation. Physical Review B, 2019, 99, .	3.2	13
50	Excitons in hexagonal boron nitride single-layer: a new platform for polaritonics in the ultraviolet. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 674.	2.1	58
51	Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science, 2018, 360, 291-295.	12.6	259
52	Magnetic field assisted transmission of THz waves through a graphene layer combined with a periodically perforated metallic film. Physical Review B, 2018, 97, .	3.2	5
53	Scattering of graphene plasmons at abrupt interfaces: An analytic and numeric study. Physical Review B, 2018, 97, .	3.2	18
54	Channel surface plasmons in a continuous and flat graphene sheet. Physical Review B, 2018, 97, .	3.2	2

#	Article	IF	CITATIONS
55	Nonlinear optical responses of crystalline systems: Results from a velocity gauge analysis. Physical Review B, 2018, 97, .	3.2	50
56	Probing nonlocal effects in metals with graphene plasmons. Physical Review B, 2018, 97, .	3.2	44
57	Excitonic effects in the optical properties of 2D materials:an equation of motion approach. 2D Materials, 2017, 4, 025086.	4.4	45
58	Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials. ACS Photonics, 2017, 4, 3045-3054.	6.6	33
59	Gauge covariances and nonlinear optical responses. Physical Review B, 2017, 96, .	3.2	73
60	Controlling Spoof Plasmons in a Metal Grating Using Graphene Surface Plasmons. ACS Photonics, 2017, 4, 3071-3080.	6.6	14
61	Hydrodynamic model approach to the formation of plasmonic wakes in graphene. Physical Review B, 2017, 96, .	3.2	24
62	Universal description of channel plasmons in two-dimensional materials. Optica, 2017, 4, 595.	9.3	13
63	Impact of Graphene on the Polarizability of a Neighbour Nanoparticle: A Dyadic Green's Function Study. Applied Sciences (Switzerland), 2017, 7, 1158.	2.5	12
64	Electromagnetic properties of a monolayer of polarisable particles deposited on graphene. , 2017, , .		0
65	Numerical calculation of the Casimir-Polder interaction between a graphene sheet with vacancies and an atom. Physical Review B, 2016, 94, .	3.2	15
66	Pumping electrons in graphene to theMpoint in the Brillouin zone: Emergence of anisotropic plasmons. Physical Review B, 2016, 94, .	3.2	5
67	Multiple negative differential conductance regions and inelastic phonon assisted tunneling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>graphene</mml:mtext><mml:mo>/Physical Review B. 2016. 93</mml:mo></mml:math 	o> ^{3,2} mml:r	ni>h
68	Scattering of surface plasmon polaritons in a graphene multilayer photonic crystal with inhomogeneous doping. Physical Review B, 2016, 93, .	3.2	10
69	Graphene and polarisable nanoparticles: Looking good together?. , 2016, , .		0
70	Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach. Physical Review B, 2016, 94, .	3.2	23
71	Graphene Plasmons in Triangular Wedges and Grooves. ACS Photonics, 2016, 3, 2176-2183.	6.6	26
72	Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm. Journal of Physics Condensed Matter, 2016, 28, 085302.	1.8	40

#	Article	IF	CITATIONS
73	Strain-induced edge magnetism at the zigzag edge of a graphene quantum dot. Physical Review B, 2015, 91, .	3.2	35
74	Cloaking resonant scatterers and tuning electron flow in graphene. Physical Review B, 2015, 91, .	3.2	8
75	Electronic transport across linear defects in graphene. Physical Review B, 2015, 92, .	3.2	31
76	Electrically tunable resonant scattering in fluorinated bilayer graphene. Physical Review B, 2015, 92, .	3.2	20
77	Anderson localization of light in disordered superlattices containing graphene layers. Physical Review B, 2015, 92, .	3.2	9
78	Exciton polaritons in two-dimensional dichalcogenide layers placed in a planar microcavity: Tunable interaction between two Bose-Einstein condensates. Physical Review B, 2015, 92, .	3.2	36
79	Active magneto-optical control of spontaneous emission in graphene. Physical Review B, 2015, 92, .	3.2	50
80	Discrete solitons in graphene metamaterials. Physical Review B, 2015, 91, .	3.2	32
81	Terahertz response of patterned epitaxial graphene. New Journal of Physics, 2015, 17, 053045.	2.9	11
82	Analytical solution of electronic transport through a benzene molecule using lattice Green's functions. Journal of Physics Condensed Matter, 2015, 27, 145301.	1.8	3
83	Graphene-based nanostructures: Plasmonics in the THz range. , 2015, , .		Ο
84	Optical conductivity of ABA stacked graphene trilayer: mid-IR resonance due to band nesting. Journal of Physics Condensed Matter, 2014, 26, 395301.	1.8	11
85	Orbital symmetry fingerprints for magnetic adatoms in graphene. New Journal of Physics, 2014, 16, 013045.	2.9	14
86	Renormalization of nanoparticle polarizability in the vicinity of a graphene-covered interface. Physical Review B, 2014, 90, .	3.2	12
87	Nonlinear TE-polarized surface polaritons on graphene. Physical Review B, 2014, 89, .	3.2	68
88	Optical bistability of graphene in the terahertz range. Physical Review B, 2014, 90, .	3.2	133
89	Observation of intra- and inter-band transitions in the transient optical response of graphene. New Journal of Physics, 2013, 15, 015009.	2.9	87
90	Scattering by linear defects in graphene: a tight-binding approach. Journal of Physics Condensed Matter, 2013, 25, 075303.	1.8	11

#	Article	IF	CITATIONS
91	Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. Journal of Optics (United Kingdom), 2013, 15, 114004.	2.2	79
92	Enhancing the absorption of graphene in the terahertz range. Europhysics Letters, 2013, 101, 58002.	2.0	44
93	Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. Journal of Physics Condensed Matter, 2013, 25, 125303.	1.8	33
94	A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE. International Journal of Modern Physics B, 2013, 27, 1341001.	2.0	325
95	Strong light–matter interaction in systems described by a modified Dirac equation. Journal of Physics Condensed Matter, 2013, 25, 305801.	1.8	10
96	On Coulomb drag in double layer systems. Journal of Physics Condensed Matter, 2012, 24, 335602.	1.8	30
97	Scattering by linear defects in graphene: A continuum approach. Physical Review B, 2012, 86, .	3.2	22
98	Confined magneto-optical waves in graphene. Physical Review B, 2012, 85, .	3.2	54
99	Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012, 335, 947-950.	12.6	2,268
100	Enhanced optical dichroism of graphene nanoribbons. Physical Review B, 2012, 86, .	3.2	18
101	Complete light absorption in graphene-metamaterial corrugated structures. Physical Review B, 2012, 86, .	3.2	80
102	Graphene-based photodetector with two cavities. Physical Review B, 2012, 85, .	3.2	142
103	Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene. Journal of Physics Condensed Matter, 2012, 24, 245303.	1.8	20
104	Tunable graphene-based polarizer. Journal of Applied Physics, 2012, 112, 084320.	2.5	81
105	Continuum model of the twisted graphene bilayer. Physical Review B, 2012, 86, .	3.2	463
106	Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers. Nano Letters, 2012, 12, 1707-1710.	9.1	724
107	Graphene-based polaritonic crystal. Physical Review B, 2012, 85, .	3.2	61
108	Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Physical Review B, 2011, 83, .	3.2	152

#	Article	IF	CITATIONS
109	Stability of boron nitride bilayers: Ground-state energies, interlayer distances, and tight-binding description. Physical Review B, 2011, 83, .	3.2	151
110	Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids. Physical Review B, 2011, 84, .	3.2	125
111	Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: the <i>oddness</i> of its even-parity solutions. European Journal of Physics, 2011, 32, 1377-1384.	0.6	24
112	Coulomb drag and high-resistivity behavior in double-layer graphene. Europhysics Letters, 2011, 95, 18001.	2.0	51
113	Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects. Physical Review B, 2011, 84, .	3.2	65
114	Electronic doping of graphene by deposited transition metal atoms. Physical Review B, 2011, 84, .	3.2	29
115	Transport properties of graphene with one-dimensional charge defects. Europhysics Letters, 2011, 94, 28003.	2.0	63
116	<i>Colloquium</i> : The transport properties of graphene: An introduction. Reviews of Modern Physics, 2010, 82, 2673-2700.	45.6	884
117	Dynamical polarizability of graphene beyond the Dirac cone approximation. Physical Review B, 2010, 81, .	3.2	89
118	Optical properties of strained graphene. Europhysics Letters, 2010, 92, 67001.	2.0	112
119	Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene. Europhysics Letters, 2010, 92, 68001.	2.0	109
120	Electronic properties of a biased graphene bilayer. Journal of Physics Condensed Matter, 2010, 22, 175503.	1.8	209
121	Excitonic Effects in the Optical Conductivity of Gated Graphene. Physical Review Letters, 2010, 105, 055501.	7.8	67
122	Lattice Green's function approach to the solution of the spectrum of an array of quantum dots and its linear conductance. Physical Review B, 2009, 79, .	3.2	10
123	Distortion of the perfect lattice structure in bilayer graphene. Physical Review B, 2009, 79, .	3.2	11
124	FOCUS ON GRAPHENE. New Journal of Physics, 2009, 11, 095002.	2.9	34
125	Evolution of squeezed states under the Fock-Darwin Hamiltonian. Physical Review A, 2009, 80, .	2.5	6
126	Local density of states and scanning tunneling currents in graphene. New Journal of Physics, 2009, 11, 095007.	2.9	30

#	Article	IF	CITATIONS
127	The transport properties of graphene. Journal of Physics Condensed Matter, 2009, 21, 323201.	1.8	81
128	The electronic properties of graphene. Reviews of Modern Physics, 2009, 81, 109-162.	45.6	20,779
129	Strained graphene: tight-binding and density functional calculations. New Journal of Physics, 2009, 11, 115002.	2.9	197
130	Theory of Scanning Tunneling Spectroscopy of Magnetic Adatoms in Graphene. Physical Review Letters, 2009, 103, 206804.	7.8	89
131	Scanning tunneling microscopy currents on locally disordered graphene. Physical Review B, 2009, 79, .	3.2	24
132	Scattering in one-dimensional heterostructures described by the Dirac equation. Journal of Physics Condensed Matter, 2009, 21, 095501.	1.8	61
133	Dirac electrons in graphene-based quantum wires and quantum dots. Journal of Physics Condensed Matter, 2009, 21, 344202.	1.8	37
134	Tight-binding approach to uniaxial strain in graphene. Physical Review B, 2009, 80, .	3.2	1,094
135	Magnetism in strained graphene dots. Physical Review B, 2009, 80, .	3.2	41
136	Inducing energy gaps in monolayer and bilayer graphene: Local density approximation calculations. Physical Review B, 2008, 78, .	3.2	117
137	Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008, 320, 1308-1308.	12.6	7,667
138	Bilayer graphene: gap tunability and edge properties. Journal of Physics: Conference Series, 2008, 129, 012002.	0.4	28
139	Electronic properties of bilayer and multilayer graphene. Physical Review B, 2008, 78, .	3.2	259
140	Conductivity of suspended and non-suspended graphene at finite gate voltage. Physical Review B, 2008, 78, .	3.2	105
141	First-order ferromagnetic phase transition in the low electronic density regime of a biased graphene bilayer. Journal of Physics Condensed Matter, 2008, 20, 335207.	1.8	6
142	Low-Density Ferromagnetism in Biased Bilayer Graphene. Physical Review Letters, 2008, 100, 186803.	7.8	124
143	Transport Through a Graphene Transistor. Mathematics in Industry, 2008, , 494-498.	0.3	0
144	Localized States at Zigzag Edges of Bilayer Graphene. Physical Review Letters, 2008, 100, 026802.	7.8	136

#	Article	IF	CITATIONS
145	The infrared conductivity of graphene on top of silicon oxide. Europhysics Letters, 2008, 84, 38002.	2.0	54
146	Optical conductivity of graphene in the visible region of the spectrum. Physical Review B, 2008, 78, .	3.2	728
147	Localized Magnetic States in Graphene. Physical Review Letters, 2008, 101, 026805.	7.8	233
148	Localized states at zigzag edges of multilayer graphene and graphite steps. Europhysics Letters, 2008, 84, 17001.	2.0	25
149	TRANSPORT IN A CLEAN GRAPHENE SHEET AT FINITE TEMPERATURE AND FREQUENCY. International Journal of Modern Physics B, 2008, 22, 2529-2536.	2.0	37
150	Effect of Holstein phonons on the electronic properties of graphene. Journal of Physics Condensed Matter, 2008, 20, 055002.	1.8	69
151	Tunneling of Dirac electrons through spatial regions of finite mass. Journal of Physics Condensed Matter, 2008, 20, 325221.	1.8	34
152	Transmission through a defect in polyacene: the extreme limit of ultranarrow graphene. Journal of Physics Condensed Matter, 2008, 20, 255207.	1.8	9
153	Publisher's Note: Localized Magnetic States in Graphene [Phys. Rev. Lett.101, 026805 (2008)]. Physical Review Letters, 2008, 101, .	7.8	6
154	Publisher's Note: Conductivity of suspended and non-suspended graphene at finite gate voltage [Phys. Rev. B78, 085418 (2008)]. Physical Review B, 2008, 78, .	3.2	1
155	Role of symmetry in the interplay of T = 0 quantum-phase transitions with unconventional T > 0 transport properties in integrable quantum lattice systems. Europhysics Letters, 2007, 78, 17005.	2.0	3
156	Fermi liquid theory of a Fermi ring. Physical Review B, 2007, 75, .	3.2	69
157	Electron waves in chemically substituted graphene. Europhysics Letters, 2007, 80, 67007.	2.0	71
158	Charge and spin transport in the one-dimensional Hubbard model. Journal of Physics Condensed Matter, 2007, 19, 506203.	1.8	9
159	An introduction to the physics of graphene layers. , 2007, , 111-143.		Ο
160	Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Physical Review Letters, 2007, 99, 216802.	7.8	1,728
161	Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields. Journal of Physics Condensed Matter, 2007, 19, 406231.	1.8	73
162	Electronic transport in graphene: A semiclassical approach including midgap states. Physical Review B, 2007, 76, .	3.2	515

#	Article	IF	CITATIONS
163	Phenomenological study of the electronic transport coefficients of graphene. Physical Review B, 2007, 76, .	3.2	109
164	Transmission through a biased graphene bilayer barrier. Physical Review B, 2007, 76, .	3.2	125
165	Graphene Bilayer with a Twist: Electronic Structure. Physical Review Letters, 2007, 99, 256802.	7.8	1,165
166	Gaped graphene bilayer: disorder and magnetic field effects. Physica Status Solidi (B): Basic Research, 2007, 244, 2311-2316.	1.5	25
167	Edge and surface states in the quantum Hall effect in graphene. Physical Review B, 2006, 73, .	3.2	164
168	Electronic states and Landau levels in graphene stacks. Physical Review B, 2006, 73, .	3.2	591
169	Electronic Properties of Graphene Multilayers. Physical Review Letters, 2006, 97, 266801.	7.8	264
170	Dirac fermion confinement in graphene. Physical Review B, 2006, 73, .	3.2	137
171	Conductance quantization in mesoscopic graphene. Physical Review B, 2006, 73, .	3.2	320
172	Disorder Induced Localized States in Graphene. Physical Review Letters, 2006, 96, 036801.	7.8	543
173	Electronic properties of disordered two-dimensional carbon. Physical Review B, 2006, 73, .	3.2	1,292
174	Electron-electron interactions and the phase diagram of a graphene bilayer. Physical Review B, 2006, 73, .	3.2	200
175	Weak ferromagnetism and spiral spin structures in honeycomb Hubbard planes. Journal of Physics Condensed Matter, 2006, 18, 1769-1779.	1.8	9
176	Site dilution of quantum spins in the honeycomb lattice. Physical Review B, 2006, 73, .	3.2	53
177	Coulomb interactions and ferromagnetism in pure and doped graphene. Physical Review B, 2005, 72, .	3.2	207
178	Comment on "Gapless Spin-1 Neutral Collective Mode Branch for Graphite― Physical Review Letters, 2004, 92, 199701; author reply 199702.	7.8	14
179	Phase diagram and magnetic collective excitations of the Hubbard model for graphene sheets and layers. Physical Review B, 2004, 70, .	3.2	110
180	Spin waves in La2CuO4: band structure and correlation effects. Physica Status Solidi (B): Basic Research, 2003, 236, 523-526.	1.5	11

#	Article	IF	CITATIONS
181	Spin flop transition in doped antiferromagnets. Journal of Physics Condensed Matter, 2003, 15, 7271-7286.	1.8	3
182	Spin-wave dispersion inLa2CuO4. Physical Review B, 2002, 65, .	3.2	45
183	Magnetic and superconducting instabilities in the periodic Anderson model: a random-phase-approximation study. Journal of Physics Condensed Matter, 2002, 14, 5575-5582.	1.8	4
184	Charge and spin transport in the one-dimensional Hubbard model. Journal of Physics Condensed Matter, 2001, 13, 5135-5157.	1.8	4
185	Local-moment formation in the periodic Anderson model with superconducting correlations. Physical Review B, 2001, 65, .	3.2	13
186	Specific heat of the periodic Anderson model: From weak to strong coupling. Physical Review B, 2001, 64, .	3.2	8
187	Finite-temperature transport in finite-size Hubbard rings in the strong-coupling limit. Physical Review B, 2000, 61, 5169-5183.	3.2	32
188	Superconductivity in theSU(N)Anderson lattice atU=â^ž. Physical Review B, 2000, 62, 9800-9807.	3.2	15
189	Finite-Frequency Optical Absorption in 1D Conductors and Mott-Hubbard Insulators. Physical Review Letters, 2000, 84, 4673-4676.	7.8	26
190	Curvature of levels and charge stiffness of one-dimensional spinless fermions. Physical Review B, 1999, 59, 7382-7392.	3.2	26
191	Complete pseudohole and heavy-pseudoparticle operator representation for the Hubbard chain. Physical Review B, 1997, 56, 3717-3741.	3.2	13
192	Solution of spherically symmetric quantum models by the transfer-matrix method. European Journal of Physics, 1997, 18, 369-373.	0.6	0
193	Pseudoparticle description of the 1D Hubbard model electronic transport properties. Zeitschrift Für Physik B-Condensed Matter, 1996, 103, 217-220.	1.1	18
194	Symmetries and pseudoparticle transformations in 1D non-Abelian quantum liquids. Journal of Low Temperature Physics, 1995, 99, 571-576.	1.4	1
195	Ground states of integrable quantum liquids. Physical Review B, 1995, 51, 7481-7496.	3.2	4