Sabrina Diano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6186207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melanocortin Signaling Connecting Systemic Metabolism With Mood Disorders. Biological Psychiatry, 2022, 91, 879-887.	1.3	9
2	Palmitoylethanolamide dampens neuroinflammation and anxiety-like behavior in obese mice. Brain, Behavior, and Immunity, 2022, 102, 110-123.	4.1	28
3	Hypothalamic glucose-sensing mechanisms. Diabetologia, 2021, 64, 985-993.	6.3	32
4	POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nature Metabolism, 2021, 3, 299-308.	11.9	80
5	Drp1 is required for AgRP neuronal activity and feeding. ELife, 2021, 10, .	6.0	13
6	Prostaglandin in the ventromedial hypothalamus regulates peripheral glucose metabolism. Nature Communications, 2021, 12, 2330.	12.8	15
7	Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Molecular Psychiatry, 2021, 26, 2740-2752.	7.9	20
8	Central anorexigenic actions of bile acids are mediated by TGR5. Nature Metabolism, 2021, 3, 595-603.	11.9	64
9	Mitochondrial Fission Governed by Drp1 Regulates Exogenous Fatty Acid Usage and Storage in Hela Cells. Metabolites, 2021, 11, 322.	2.9	16
10	Role of the Melanocortin System in the Central Regulation of Cardiovascular Functions. Frontiers in Physiology, 2021, 12, 725709.	2.8	4
11	MC4R Signaling in Dorsal Raphe Nucleus Controls Feeding, Anxiety, and Depression. Cell Reports, 2020, 33, 108267.	6.4	34
12	A Sympathetic Treatment for Obesity. Cell Metabolism, 2020, 31, 1043-1045.	16.2	4
13	Hepatic TET3 contributes to type-2 diabetes by inducing the HNF41 \pm fetal isoform. Nature Communications, 2020, 11, 342.	12.8	24
14	Microglial UCP2 Mediates Inflammation and Obesity Induced by High-Fat Feeding. Cell Metabolism, 2019, 30, 952-962.e5.	16.2	139
15	Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight. Molecular Metabolism, 2018, 10, 28-38.	6.5	14
16	Overexpression of melanocortin 2 receptor accessory protein 2 (MRAP2) in adult paraventricular MC4R neurons regulates energy intake and expenditure. Molecular Metabolism, 2018, 18, 79-87.	6.5	20
17	Mitochondrial Dynamics and Hypothalamic Regulation of Metabolism. Endocrinology, 2018, 159, 3596-3604.	2.8	33

18 A new brain circuit in feeding control. Science, 2018, 361, 29-30.

12.6 3

#	Article	IF	CITATIONS
19	DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons. Cell Metabolism, 2017, 25, 647-660.	16.2	84
20	POMC Neurons: From Birth to Death. Annual Review of Physiology, 2017, 79, 209-236.	13.1	117
21	Hypothalamic Ventromedial Lin28a Enhances Glucose Metabolism in Diet-Induced Obesity. Diabetes, 2017, 66, 2102-2111.	0.6	16
22	Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. ELife, 2017, 6, .	6.0	19
23	Prolyl Endopeptidase (PREP) is Associated With Male Reproductive Functions and Gamete Physiology in Mice. Journal of Cellular Physiology, 2016, 231, 551-557.	4.1	31
24	UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness. Cell, 2016, 164, 872-883.	28.9	136
25	Adverse Effects of Bisphenol A Exposure on Glucose Metabolism Regulation. Open Biotechnology Journal, 2016, 10, 122-130.	1.2	14
26	AgRP Neurons Regulate Bone Mass. Cell Reports, 2015, 13, 8-14.	6.4	48
27	Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature, 2015, 519, 45-50.	27.8	336
28	Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex. International Journal of Neuropsychopharmacology, 2015, 18, pyu048-pyu048.	2.1	13
29	Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11876-11881.	7.1	26
30	Hormonal regulation of the hypothalamic melanocortin system. Frontiers in Physiology, 2014, 5, 480.	2.8	70
31	Prolyl carboxypeptidase mRNA expression in the mouse brain. Brain Research, 2014, 1542, 85-92.	2.2	19
32	Mitochondrial UCP2 in the central regulation of metabolism. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 757-764.	4.7	95
33	Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience, 2014, 17, 908-910.	14.8	268
34	PPARÎ ³ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. Journal of Clinical Investigation, 2014, 124, 4017-4027.	8.2	50
35	A temperature hypothesis of hypothalamus-driven obesity. Yale Journal of Biology and Medicine, 2014, 87, 149-58.	0.2	6
36	Prolyl carboxypeptidase and its inhibitors in metabolism. Trends in Endocrinology and Metabolism, 2013, 24, 61-67.	7.1	23

#	Article	IF	CITATIONS
37	Ghrelin regulates hypothalamic prolyl carboxypeptidase expression in mice. Molecular Metabolism, 2013, 2, 23-30.	6.5	21
38	Prolyl Endopeptidase-Deficient Mice Have Reduced Synaptic Spine Density in the CA1 Region of the Hippocampus, Impaired LTP, and Spatial Learning and Memory. Cerebral Cortex, 2013, 23, 2007-2014.	2.9	28
39	Role of Reactive Oxygen Species in Hypothalamic Regulation of Energy Metabolism. Endocrinology and Metabolism, 2013, 28, 3.	3.0	22
40	Deletion of prolyl carboxypeptidase attenuates the metabolic effects of diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1502-E1510.	3.5	29
41	Prolyl Carboxypeptidase Regulates Energy Expenditure and the Thyroid Axis. Endocrinology, 2012, 153, 683-689.	2.8	22
42	Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends in Molecular Medicine, 2012, 18, 52-58.	6.7	180
43	Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Medicine, 2011, 17, 1121-1127.	30.7	239
44	Nicotine Decreases Food Intake Through Activation of POMC Neurons. Science, 2011, 332, 1330-1332.	12.6	337
45	New aspects of melanocortin signaling: A role for PRCP in α-MSH degradation. Frontiers in Neuroendocrinology, 2011, 32, 70-83.	5.2	48
46	alpha-Melanocyte stimulating hormone: production and degradation. Journal of Molecular Medicine, 2010, 88, 1195-1201.	3.9	60
47	Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14875-14880.	7.1	370
48	Corticosterone Regulates Synaptic Input Organization of POMC and NPY/AgRP Neurons in Adult Mice. Endocrinology, 2010, 151, 5395-5402.	2.8	74
49	A Sympathetic View on Free Radicals in Diabetes. Neuron, 2010, 66, 809-811.	8.1	5
50	Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity. Journal of Neuroscience, 2010, 30, 11815-11825.	3.6	194
51	Fuel utilization by hypothalamic neurons: roles for ROS. Trends in Endocrinology and Metabolism, 2009, 20, 78-87.	7.1	129
52	Prolylcarboxypeptidase regulates food intake by inactivating α-MSH in rodents. Journal of Clinical Investigation, 2009, 119, 2291-303.	8.2	122
53	Overexpression of UCP2 Protects Thalamic Neurons following Global Ischemia in the Mouse. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1186-1195.	4.3	64
54	UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature, 2008, 454, 846-851.	27.8	633

#	Article	IF	CITATIONS
55	Type 3 Deiodinase in Hypoxia: To Cool or to Kill?. Cell Metabolism, 2008, 7, 363-364.	16.2	16
56	Anticonvulsant effects of leptin in epilepsy. Journal of Clinical Investigation, 2008, 118, 26-28.	8.2	23
57	A Central Thermogenic-like Mechanism in Feeding Regulation: An Interplay between Arcuate Nucleus T3 and UCP2. Cell Metabolism, 2007, 5, 21-33.	16.2	264
58	Hormonal regulation of the arcuate nucleus melanocortin system. Frontiers in Bioscience - Landmark, 2007, 12, 3519.	3.0	21
59	Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nature Medicine, 2007, 13, 89-94.	30.7	373
60	Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neuroscience, 2006, 9, 381-388.	14.8	738
61	Mitochondrial uncoupling proteins in the cns: in support of function and survival. Nature Reviews Neuroscience, 2005, 6, 829-840.	10.2	321
62	Inverse Shift in Circulating Corticosterone and Leptin Levels Elevates Hypothalamic Deiodinase Type 2 in Fasted Rats. Endocrinology, 2005, 146, 2827-2833.	2.8	87
63	Suppression of hypothalamic deiodinase type II activity blunts TRH mRNA decline during fasting. FEBS Letters, 2005, 579, 4654-4658.	2.8	42
64	Brain Circuits Regulating Energy Homeostasis. Neuroscientist, 2004, 10, 235-246.	3.5	63
65	The floating blueprint of hypothalamic feeding circuits. Nature Reviews Neuroscience, 2004, 5, 662-667.	10.2	103
66	Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin. Science, 2004, 304, 110-115.	12.6	890
67	Mitochondrial uncoupling protein 2 in the central nervous system: neuromodulator and neuroprotector. Biochemical Pharmacology, 2003, 65, 1917-1921.	4.4	77
68	Hypothalamic type II iodothyronine deiodinase: a light and electron microscopic study. Brain Research, 2003, 976, 130-134.	2.2	44
69	The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron, 2003, 37, 649-661.	8.1	1,465
70	Fasting Activates the Nonhuman Primate Hypocretin (Orexin) System and Its Postsynaptic Targets. Endocrinology, 2003, 144, 3774-3778.	2.8	105
71	Uncoupling Protein 2 Prevents Neuronal Death Including that Occurring during Seizures: A Mechanism for Preconditioning. Endocrinology, 2003, 144, 5014-5021.	2.8	177
72	Coenzyme Q Induces Nigral Mitochondrial Uncoupling and Prevents Dopamine Cell Loss in a Primate Model of Parkinson's Disease. Endocrinology, 2003, 144, 2757-2760.	2.8	112

#	Article	IF	CITATIONS
73	Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochemical Pharmacology, 2002, 64, 363-367.	4.4	111
74	Uncoupling protein 2 (UCP2) lowers alcohol sensitivity and pain threshold. Biochemical Pharmacology, 2002, 64, 369-374.	4.4	31
75	Uncoupling protein 2 in primary pain and temperature afferents of the spinal cord. Brain Research, 2002, 955, 260-263.	2.2	10
76	Monosynaptic Pathway Between the Arcuate Nucleus Expressing Glial Type II lodothyronine 5′-Deiodinase mRNA and the Median Eminence-Projective TRH Cells of the Rat Paraventricular Nucleus. Journal of Neuroendocrinology, 2001, 10, 731-742.	2.6	51
77	Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 2001, 411, 480-484.	27.8	2,008
78	Minireview: Ghrelin and the Regulation of Energy Balance—A Hypothalamic Perspective. Endocrinology, 2001, 142, 4163-4169.	2.8	523
79	Minireview: Ghrelin and the Regulation of Energy BalanceA Hypothalamic Perspective. Endocrinology, 2001, 142, 4163-4169.	2.8	182
80	Mitochondrial Uncoupling Protein 2 (UCP2) in the Nonhuman Primate Brain and Pituitary**This work was supported by NSF Grant IBN-9728581, NIH Grants NS-36111, MH-59847, RR-00163, HD-29186, and HD-37186 Endocrinology, 2000, 141, 4226-4238.	2.8	45
81	Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. Journal of Comparative Neurology, 1999, 415, 145-159.	1.6	636
82	Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. , 1999, 415, 145.		3
83	Brain Uncoupling Protein 2: Uncoupled Neuronal Mitochondria Predict Thermal Synapses in Homeostatic Centers. Journal of Neuroscience, 1999, 19, 10417-10427.	3.6	163
84	Leptin Receptor Immunoreactivity is Associated with the Golgi Apparatus of Hypothalamic Neurones and Glial Cells. Journal of Neuroendocrinology, 1998, 10, 647-650.	2.6	85
85	Segregation of the intra- and extrahypothalamic neuropeptide Y and catecholaminergic inputs on paraventricular neurons, including those producing thyrotropin-releasing hormone. Regulatory Peptides, 1998, 75-76, 117-126.	1.9	36
86	Fasting-Induced Increase in Type II lodothyronine Deiodinase Activity and Messenger Ribonucleic Acid Levels Is Not Reversed by Thyroxine in the Rat Hypothalamus1. Endocrinology, 1998, 139, 2879-2884.	2.8	124
87	Kainate Glutamate Receptors (GluR5–7) in the Rat Arcuate Nucleus: Relationship to Tanycytes, Astrocytes, Neurons and Gonadal Steroid Receptors. Journal of Neuroendocrinology, 1998, 10, 239-247.	2.6	35