
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6186128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marginols A‒H, unprecedented pimarane diterpenoids from Kaempferia marginata and their NO inhibitory activities. Phytochemistry, 2022, 196, 113109.	1.4	7
2	Ethyl P-Methoxycinnamate: An Active Anti-Metastasis Agent and Chemosensitizer Targeting NFκB from Kaempferia galanga for Melanoma Cells. Life, 2022, 12, 337.	1.1	1
3	Combined nano cancer immunotherapy based on immune status in a tumor microenvironment. Journal of Controlled Release, 2022, 345, 200-213.	4.8	13
4	Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants. MAbs, 2022, 14, 2072455.	2.6	9
5	Acridone Derivatives from Atalantia monophyla Inhibited Cancer Cell Proliferation through ERK Pathway. Molecules, 2022, 27, 3865.	1.7	2
6	Antiâ€inflammatory effect of fermented brown rice and rice bran with <i>Aspergillus oryzae</i> on mice. Traditional & Kampo Medicine, 2021, 8, 60-65.	0.2	4
7	ASK1 suppresses NK cellâ€mediated intravascular tumor cell clearance in lung metastasis. Cancer Science, 2021, 112, 1633-1643.	1.7	5
8	Erianthridin suppresses non-small-cell lung cancer cell metastasis through inhibition of Akt/mTOR/p70S6K signaling pathway. Scientific Reports, 2021, 11, 6618.	1.6	11
9	Establishment of bioluminescent imaging model using murine T cell lymphoma susceptive to NK cell-dependent immune-surveillance. Journal of Immunological Methods, 2021, 491, 112993.	0.6	0
10	Anti-inflammatory effects of Morus alba Linne bark on the activation of toll-like receptors and imiquimod-induced ear edema in mice. BMC Complementary Medicine and Therapies, 2021, 21, 115.	1.2	5
11	Anti-metastatic effects of ergosterol peroxide from the entomopathogenic fungus Ophiocordyceps gracilioides on 4T1 breast cancer cells. Journal of Natural Medicines, 2021, 75, 824-832.	1.1	3
12	Identification of <i>Ophiocordyceps gracilioides</i> by Its Anti-tumor Effects through Targeting the NFI®STAT3-IL-6 Inflammatory Pathway. Biological and Pharmaceutical Bulletin, 2021, 44, 686-690.	0.6	4
13	Inhibition of cell-intrinsic NF-κB activity and metastatic abilities of breast cancer by aloe-emodin and emodic-acid isolated from Asphodelus microcarpus. Journal of Natural Medicines, 2021, 75, 840-853.	1.1	29
14	NKG2D defines tumorâ€reacting effector CD8 ⁺ T cells within tumor microenvironment. Cancer Science, 2021, 112, 3484-3490.	1.7	4
15	STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. , 2021, 9, e002852.		102
16	Synthetic E-guggulsterone derivative GSD-1 inhibits NF-κB signaling and suppresses the metastatic potential of breast cancer cells. Biomedicine and Pharmacotherapy, 2021, 140, 111737.	2.5	6
17	Design and synthesis of 2-Substituted-4-benzyl-5-methylimidazoles as new potential Anti-breast cancer agents to inhibit oncogenic STAT3 functions. Bioorganic Chemistry, 2021, 113, 105033.	2.0	7
18	Flavanols and Flavanes from Crinum asiaticum and Their Effects on LPS Signaling Pathway Through the Inhibition of NF-IºB Activation. Planta Medica, 2021, , .	0.7	2

#	Article	IF	CITATIONS
19	Loss of cell wall integrity genes <i>cpxA</i> and <i>mrcB</i> causes flocculation in <i>Escherichia coli</i> . Biochemical Journal, 2021, 478, 41-59.	1.7	5
20	Crucial contribution of GPR56/ADGRG1, expressed by breast cancer cells, to bone metastasis formation. Cancer Science, 2021, 112, 4883-4893.	1.7	9
21	SOX10 Regulates Melanoma Immunogenicity through an IRF4–IRF1 Axis. Cancer Research, 2021, 81, 6131-6141.	0.4	31
22	Anti-inflammatory activities of isopimara-8(14),-15-diene diterpenoids and mode of action of kaempulchraols P and Q from Kaempferia pulchra rhizomes. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126841.	1.0	8
23	Antimetastatic effects of thalidomide by inducing the functional maturation of peripheral natural killer cells. Cancer Science, 2020, 111, 2770-2778.	1.7	7
24	Targeting PSMD14 inhibits melanoma growth through SMAD3 stabilization. Scientific Reports, 2020, 10, 19214.	1.6	13
25	Pharmacological targeting of natural killer cells for cancer immunotherapy. Cancer Science, 2020, 111, 1869-1875.	1.7	18
26	Anti-inflammatory activities of isopimara-8(9),15-diene diterpenoids and mode of action of kaempulchraols B–D from Kaempferia pulchra rhizomes. Journal of Natural Medicines, 2020, 74, 487-494.	1.1	10
27	Rational Combination Therapy for Melanoma with Dinaciclib by Targeting BAK-Dependent Cell Death. Molecular Cancer Therapeutics, 2020, 19, 627-636.	1.9	10
28	Anti-metastatic Effects of Baicalein by Targeting STAT3 Activity in Breast Cancer Cells. Biological and Pharmaceutical Bulletin, 2020, 43, 1899-1905.	0.6	16
29	Anti‑inflammatory compounds moracin O and P from Morus alba Linn. (Sohakuhi) target the NF‑κB pathway. Molecular Medicine Reports, 2020, 22, 5385-5391.	1.1	13
30	Functional characterization of multiple PAS domain-containing diguanylate cyclases in Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2020, 166, 659-668.	0.7	2
31	Anti-Metastatic Effects of Curcumin Analogues in a Mouse Breast Cancer Model. BPB Reports, 2020, 3, 76-79.	0.1	Ο
32	Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytotherapy Research, 2019, 33, 2531-2547.	2.8	32
33	Macrophageâ€specific hypoxiaâ€inducible factorâ€1α deletion suppresses the development of liver tumors in highâ€fat dietâ€fed obese and diabetic mice. Journal of Diabetes Investigation, 2019, 10, 1411-1418.	1.1	4
34	Paclitaxel-induced hypothermia and hypoperfusion increase breast cancer metastasis and angiogenesis in mice. Oncology Letters, 2018, 15, 2330-2334.	0.8	6
35	Identification of Tumoricidal TCRs from Tumor-Infiltrating Lymphocytes by Single-Cell Analysis. Cancer Immunology Research, 2018, 6, 378-388.	1.6	35
36	NK Cells Control Tumor-Promoting Function of Neutrophils in Mice. Cancer Immunology Research, 2018, 6, 348-357.	1.6	39

3

#	Article	IF	CITATIONS
37	STAM-binding protein regulates melanoma metastasis through SLUG stabilization. Biochemical and Biophysical Research Communications, 2018, 507, 484-488.	1.0	12
38	Lungâ€resident natural killer cells control pulmonary tumor growth in mice. Cancer Science, 2018, 109, 2670-2676.	1.7	22
39	Lac water extract inhibits IFN-γ signaling through JAK2-STAT1-IRF1 axis in human melanoma. RSC Advances, 2018, 8, 21534-21540.	1.7	3
40	The Dark Side of IFN- \hat{I}^3 : Its Role in Promoting Cancer Immunoevasion. International Journal of Molecular Sciences, 2018, 19, 89.	1.8	227
41	COP9 signalosome subunit 5 regulates cancer metastasis by deubiquitinating SNAIL. Oncotarget, 2018, 9, 20670-20680.	0.8	11
42	IFN-γ is required for cytotoxic T cell-dependent cancer genome immunoediting. Nature Communications, 2017, 8, 14607.	5.8	125
43	Proteasome Inhibitor–Loaded Micelles Enhance Antitumor Activity Through Macrophage Reprogramming by NF-κB Inhibition. Journal of Pharmaceutical Sciences, 2017, 106, 2438-2446.	1.6	9
44	Chemosensitizing Effect of Saikosaponin B on B16F10 Melanoma Cells. Nutrition and Cancer, 2017, 69, 505-511.	0.9	12
45	Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 8441-8455.	2.9	27
46	ASK1 facilitates tumor metastasis through phosphorylation of an ADP receptor P2Y12 in platelets. Cell Death and Differentiation, 2017, 24, 2066-2076.	5.0	34
47	Coptidis Rhizoma induces intrinsic apoptosis through BAX and BAK activation in human melanoma. Oncology Reports, 2017, 38, 538-544.	1.2	10
48	Effect of Juzentaihoto/Shi-Quan-Da-Bu-Tang on malignant progression and metastasis of tumor cells. World Journal of Traditional Chinese Medicine, 2017, 3, 26.	0.9	0
49	AKT-STAT3 Pathway as a Downstream Target of EGFR Signaling to Regulate PD-L1 Expression on NSCLC cells. Journal of Cancer, 2016, 7, 1579-1586.	1.2	90
50	Targeting the ataxia telangiectasia mutated pathway for effective therapy against hirsutine-resistant breast cancer cells. Oncology Letters, 2016, 12, 295-300.	0.8	2
51	<scp>IL</scp> â€17Aâ€producing <scp>CD</scp> 30 ⁺ Vδ1 T cells drive inflammationâ€induced canc progression. Cancer Science, 2016, 107, 1206-1214.	er 1.7	28
52	Report on the use of nonâ $\in \mathfrak{e}$ linical studies in the regulatory evaluation of oncology drugs. Cancer Science, 2016, 107, 189-202.	1.7	6
53	P38 pathway as a key downstream signal of connective tissue growth factor to regulate metastatic potential in nonâ€smallâ€cell lung cancer. Cancer Science, 2016, 107, 1416-1421.	1.7	15
54	Essential roles of the interaction between cancer cell-derived chemokine, CCL4, and intra-bone CCR5-expressing fibroblasts in breast cancer bone metastasis. Cancer Letters, 2016, 378, 23-32.	3.2	58

#	Article	IF	CITATIONS
55	Comparison of two Kampo medicines in a diet-induced mouse obesity model. Traditional & Kampo Medicine, 2015, 2, 60-66.	0.2	0
56	Multi-Pathway Cellular Analysis on Crude Natural Drugs/Herbs from Japanese Kampo Formulations. PLoS ONE, 2015, 10, e0128872.	1.1	1
57	Effect of Keishibukuryogan on Genetic and Dietary Obesity Models. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-8.	0.5	5
58	Bacterial c-di-GMP Affects Hematopoietic Stem/Progenitors and Their Niches through STING. Cell Reports, 2015, 11, 71-84.	2.9	41
59	Selective anticancer activity of hirsutine against HER2-positive breast cancer cells by inducing DNA damage. Oncology Reports, 2015, 33, 2072-2076.	1.2	30
60	Critical contribution of MCL-1 in EMT-associated chemo-resistance in A549 non-small cell lung cancer. International Journal of Oncology, 2015, 46, 1844-1848.	1.4	35
61	Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nature Communications, 2015, 6, 7679.	5.8	106
62	Mammary tissue microenvironment determines TÂcellâ€dependent breast cancerâ€associated inflammation. Cancer Science, 2015, 106, 867-874.	1.7	25
63	Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. Journal of Controlled Release, 2015, 216, 149-157.	4.8	157
64	Heparanase-mediated cleavage of macromolecular heparin accelerates release of granular components of mast cells from extracellular matrices. Biochemical Journal, 2014, 458, 291-299.	1.7	10
65	RAC 1 inhibition as a therapeutic target for gefitinibâ€resistant nonâ€smallâ€cell lung cancer. Cancer Science, 2014, 105, 788-794.	1.7	42
66	Mesenchymalâ€ŧransitioned cancer cells instigate the invasion of epithelial cancer cells through secretion of <scp>WNT</scp> 5B. Cancer Science, 2014, 105, 281-289.	1.7	38
67	Identification of Hirsutine as an anti-metastatic phytochemical by targeting NF-ήB activation. International Journal of Oncology, 2014, 45, 2085-2091.	1.4	34
68	A new adjuvant delivery system â€ [~] cyclic di-GMP/YSK05 liposome' for cancer immunotherapy. Journal of Controlled Release, 2014, 184, 20-27.	4.8	130
69	Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO Journal, 2014, 33, 2721-2734.	3.5	67
70	Activation of the STING Adaptor Attenuates Experimental Autoimmune Encephalitis. Journal of Immunology, 2014, 192, 5571-5578.	0.4	92
71	STING Ligand c-di-GMP Improves Cancer Vaccination against Metastatic Breast Cancer. Cancer Immunology Research, 2014, 2, 901-910.	1.6	187
72	c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis. PLoS ONE, 2014, 9, e109778.	1.1	21

#	Article	IF	CITATIONS
73	Survivin suppression through STAT3/β-catenin is essential for resveratrol-induced melanoma apoptosis. International Journal of Oncology, 2014, 45, 895-901.	1.4	37
74	Functional roles of tumor necrosis factorâ€related apoptosisâ€inducing ligand– <scp>DR</scp> 5 interaction in <scp>B</scp> 16 <scp>F</scp> 10 cells by activating the nuclear factorâ€i⁰ <scp>B</scp> pathway to induce metastatic potential. Cancer Science, 2013, 104, 558-562.	1.7	17
75	Berberine enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast cancer. Oncology Letters, 2013, 6, 840-844.	0.8	49
76	Identification of plant extracts sensitizing breast cancer cells to TRAIL. Oncology Reports, 2013, 29, 1991-1998.	1.2	17
77	Targeting NKG2D in tumor surveillance. Expert Opinion on Therapeutic Targets, 2012, 16, 587-599.	1.5	21
78	Controlling Glycosyl Bond Conformation of Guanine Nucleosides: Stabilization of the anti Conformer in 5′- <i>O</i> -Ethylguanosine. Journal of Physical Chemistry Letters, 2012, 3, 571-575.	2.1	17
79	Asialoglycoprotein Receptor Promotes Cancer Metastasis by Activating the EGFR–ERK Pathway. Cancer Research, 2011, 71, 6419-6427.	0.4	26
80	Early activation and interferonâ€Î³ production of tumorâ€infiltrating mature CD27 ^{high} natural killer cells. Cancer Science, 2011, 102, 1967-1971.	1.7	20
81	IFN-γ production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. Journal of Leukocyte Biology, 2011, 90, 777-785.	1.5	78
82	The Interactions of Multiple Cytokines Control NK Cell Maturation. Journal of Immunology, 2010, 185, 6679-6688.	0.4	110
83	Combination Therapy of Established Tumors by Antibodies Targeting Immune Activating and Suppressing Molecules. Journal of Immunology, 2010, 184, 5493-5501.	0.4	76
84	In vivo imaging of obesity-induced inflammation in adipose tissue. Biochemical and Biophysical Research Communications, 2010, 391, 674-678.	1.0	9
85	NKC2A Inhibits Invariant NKT Cell Activation in Hepatic Injury. Journal of Immunology, 2009, 182, 250-258.	0.4	39
86	Quantification of mouse pulmonary cancer models by microcomputed tomography imaging. Cancer Science, 2009, 100, 1544-1549.	1.7	58
87	Application of CD27 as a marker for distinguishing human NK cell subsets. International Immunology, 2008, 20, 625-630.	1.8	73
88	IFN-Î ³ -Dependent Recruitment of Mature CD27high NK Cells to Lymph Nodes Primed by Dendritic Cells. Journal of Immunology, 2008, 181, 5323-5330.	0.4	55
89	Distinct receptor repertoire formation in mouse NK cell subsets regulated by MHC class I expression. Journal of Leukocyte Biology, 2008, 83, 106-111.	1.5	19
90	NK Cell Maturation and Peripheral Homeostasis Is Associated with KLRG1 Up-Regulation. Journal of Immunology, 2007, 178, 4764-4770.	0.4	272

#	Article	IF	CITATIONS
91	Type I IFN Contributes to NK Cell Homeostasis, Activation, and Antitumor Function. Journal of Immunology, 2007, 178, 7540-7549.	0.4	261
92	Patients with multiple myeloma treated with thalidomide: evaluation of clinical parameters, cytokines, angiogenic markers, mast cells and marrow CD57+ cytotoxic T cells as predictors of outcome. Haematologica, 2007, 92, 1075-1082.	1.7	36
93	Innate Tumor Immune Surveillance. Advances in Experimental Medicine and Biology, 2007, 590, 103-111.	0.8	13
94	Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3′,5′-cyclic diguanylic acid. VOLUME 281 (2006) PAGES 8090-8099. Journal of Biological Chemistry, 2007, 282, 22248.	1.6	0
95	Innate Immune Recognition and Suppression of Tumors. Advances in Cancer Research, 2006, 95, 293-322.	1.9	55
96	NKG2D and cytotoxic effector function in tumor immune surveillance. Seminars in Immunology, 2006, 18, 176-185.	2.7	78
97	Functional subsets of mouse natural killer cells. Immunological Reviews, 2006, 214, 47-55.	2.8	222
98	CD27 Dissects Mature NK Cells into Two Subsets with Distinct Responsiveness and Migratory Capacity. Journal of Immunology, 2006, 176, 1517-1524.	0.4	650
99	CD4+CD25+ T Regulatory Cells Suppress NK Cell-Mediated Immunotherapy of Cancer. Journal of Immunology, 2006, 176, 1582-1587.	0.4	362
100	IL-21 Enhances Tumor-Specific CTL Induction by Anti-DR5 Antibody Therapy. Journal of Immunology, 2006, 176, 6347-6355.	0.4	38
101	Genome-wide Transcriptional Profile of Escherichia coli in Response to High Levels of the Second Messenger 3′,5′-Cyclic Diguanylic Acid. Journal of Biological Chemistry, 2006, 281, 8090-8099.	1.6	114
102	TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood, 2005, 105, 2082-2089.	0.6	237
103	Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. Journal of Experimental Medicine, 2005, 201, 1973-1985.	4.2	157
104	NKG2D function protects the host from tumor initiation. Journal of Experimental Medicine, 2005, 202, 583-588.	4.2	316
105	Differential antitumor immunity mediated by NKT cell subsets in vivo. Journal of Experimental Medicine, 2005, 202, 1279-1288.	4.2	349
106	T Cells Gene-engineered with DAP12 Mediate Effector Function in an NKG2D-dependent and Major Histocompatibility Complex-independent Manner. Journal of Biological Chemistry, 2005, 280, 38235-38241.	1.6	12
107	IL-21 Enhances Tumor Rejection through a NKG2D-Dependent Mechanism. Journal of Immunology, 2005, 175, 2167-2173.	0.4	121
108	A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. Journal of Experimental Medicine, 2005, 202, 1627-1633.	4.2	262

#	Article	IF	CITATIONS
109	Activation of NK cell cytotoxicity. Molecular Immunology, 2005, 42, 501-510.	1.0	560
110	Increased Marrow CD57+ Cytotoxic T Cells Is a Powerful Prognostic Marker for Survival in Patients with Relapsed Multiple Myeloma (MM) Receiving Thalidomide Blood, 2005, 106, 3486-3486.	0.6	0
111	α-Galactosylceramide: Potential Immunomodulatory Activity and Future Application [General Articles]. Current Medicinal Chemistry, 2004, 11, 241-252.	1.2	74
112	NKG2D Recognition and Perforin Effector Function Mediate Effective Cytokine Immunotherapy of Cancer. Journal of Experimental Medicine, 2004, 200, 1325-1335.	4.2	161
113	Induction of Tumor-specific T Cell Immunity by Anti-DR5 Antibody Therapy. Journal of Experimental Medicine, 2004, 199, 437-448.	4.2	193
114	Innate Immune Surveillance of Spontaneous B Cell Lymphomas by Natural Killer Cells and γδT Cells. Journal of Experimental Medicine, 2004, 199, 879-884.	4.2	227
115	IL-21 Induces the Functional Maturation of Murine NK Cells. Journal of Immunology, 2004, 172, 2048-2058.	0.4	294
116	Gene-Engineered T Cells as a Superior Adjuvant Therapy for Metastatic Cancer. Journal of Immunology, 2004, 173, 2143-2150.	0.4	77
117	Cutting Edge: Novel Priming of Tumor-Specific Immunity by NKG2D-Triggered NK Cell-Mediated Tumor Rejection and Th1-Independent CD4+ T Cell Pathway. Journal of Immunology, 2004, 172, 757-761.	0.4	44
118	NK Cell TRAIL Eliminates Immature Dendritic Cells In Vivo and Limits Dendritic Cell Vaccination Efficacy. Journal of Immunology, 2004, 172, 123-129.	0.4	191
119	Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunology and Cell Biology, 2004, 82, 323-331.	1.0	19
120	TRAIL and its receptors as targets for cancer therapy. Cancer Science, 2004, 95, 777-783.	1.7	240
121	Parallels and distinctions between T and NKT cell development in the thymus. Immunology and Cell Biology, 2004, 82, 269-275.	1.0	41
122	Cytokines in cancer immunity and immunotherapy. Immunological Reviews, 2004, 202, 275-293.	2.8	346
123	Antigen-induced tolerance by intrathymic modulation of self-recognizing inhibitory receptors. Nature Immunology, 2004, 5, 590-596.	7.0	42
124	EVIDENCE FOR THE EXISTENCE OF CANCER IMMUNOSURVEILLANCE. Annals of Cancer Research and Therapy, 2004, 12, 9-32.	0.1	0
125	Differential expression of integrin subunits in DU-145/AR prostate cancer cells. Oncology Reports, 2004, 12, 837-41.	1.2	23
126	Nature's TRAIL—On a Path to Cancer Immunotherapy. Immunity, 2003, 18, 1-6.	6.6	324

#	Article	IF	CITATIONS
127	Antimetastatic and immunomodulating properties of a new herbal prescription, Bojung-bangam-tang. International Immunopharmacology, 2003, 3, 147-157.	1.7	15
128	Â-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9464-9469.	3.3	146
129	Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. Journal of Immunology, 2003, 171, 4020-4027.	0.4	273
130	Tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis is an important endogenous mechanism for resistance to liver metastases in murine renal cancer. Cancer Research, 2003, 63, 207-13.	0.4	85
131	Critical Role for Tumor Necrosis Factor–related Apoptosis-inducing Ligand in Immune Surveillance Against Tumor Development. Journal of Experimental Medicine, 2002, 195, 161-169.	4.2	407
132	Cutting Edge: Tumor Rejection Mediated by NKG2D Receptor-Ligand Interaction Is Dependent upon Perforin. Journal of Immunology, 2002, 169, 5377-5381.	0.4	156
133	NKT cells — conductors of tumor immunity?. Current Opinion in Immunology, 2002, 14, 165-171.	2.4	270
134	New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Reviews Cancer, 2002, 2, 850-861.	12.8	655
135	IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood, 2002, 100, 1728-33.	0.6	140
136	Differential Regulation of Th1 and Th2 Functions of NKT Cells by CD28 and CD40 Costimulatory Pathways. Journal of Immunology, 2001, 166, 6012-6018.	0.4	178
137	Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. European Journal of Immunology, 2001, 31, 1720-1727.	1.6	171
138	Involvement of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in NK Cell-Mediated and IFN-γ-Dependent Suppression of Subcutaneous Tumor Growth. Cellular Immunology, 2001, 214, 194-200.	1.4	142
139	Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Medicine, 2001, 7, 94-100.	15.2	700
140	Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. , 2001, 31, 1720.		1
141	Critical contribution of IFN-γ and NK cells, but not perforin-mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. , 2001, 31, 1720.		11
142	CD27-Mediated Activation of Murine NK Cells. Journal of Immunology, 2000, 164, 1741-1745.	0.4	119
143	Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. International Immunology, 2000, 12, 909-914.	1.8	76
144	Role of Th1 and Th2 cytokines in regulating the liver injury induced by delayed-type hypersensitivity to picryl chloride. Liver International, 1999, 19, 473-480.	1.9	12

#	Article	IF	CITATIONS
145	Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. European Journal of Immunology, 1999, 29, 1390-1396.	1.6	143
146	HPLC Analysis of Juzen-taiho-to and Its Variant Formulations and Their Antimetastatic Efficacies Chemical and Pharmaceutical Bulletin, 1999, 47, 1170-1174.	0.6	29
147	Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. , 1999, 29, 1390.		1
148	Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. European Journal of Immunology, 1999, 29, 1390-1396.	1.6	13
149	Vaccination with B7-1+ tumor and anti-adhesion therapy with RGD pseudo-peptide (FC-336) efficiently induce anti-metastatic effect. Clinical and Experimental Metastasis, 1998, 16, 141-148.	1.7	7
150	Oral Administration of a Kampo (Japanese Herbal) MedicineJuzen-taiho-toInhibits Liver Metastasis of Colon 26-L5 Carcinoma Cells. Japanese Journal of Cancer Research, 1998, 89, 206-213.	1.7	77
151	Anti-metastatic and Immunomodulating Properties of the Water Extract from Celosia argentea Seeds Biological and Pharmaceutical Bulletin, 1998, 21, 1154-1159.	0.6	27
152	A Novel Uncoupler of Mitochondrial Respiration, 9, 10-Epoxy-12-octadecenoate, Exists in Human Burned Skin. Journal of Clinical Biochemistry and Nutrition, 1986, 1, 121-127.	0.6	19
153	Evaluation of chimeric antigen receptor of humanized rabbitâ€derived T cell receptorâ€like antibody. Cancer Science, 0, , .	1.7	0