
Yuancheng Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6185275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polarizationâ€Multiplexed Silicon Metasurfaces for Multi hannel Visible Light Modulation. Advanced Functional Materials, 2022, 32, .	14.9	26
2	A Review of Tunable Electromagnetic Metamaterials With Anisotropic Liquid Crystals. Frontiers in Physics, 2021, 9, .	2.1	16
3	Dualâ€5ensitivity Terahertz Metasensor Based on Lattice–Toroidalâ€Coupled Resonance. Advanced Photonics Research, 2021, 2, 2000175.	3.6	11
4	Subwavelength optical localization with toroidal excitations in plasmonic and <scp>Mie</scp> metamaterials. InformaÄnÃ-Materiály, 2021, 3, 577-597.	17.3	27
5	Broadband and wide angle microwave absorption with optically transparent metamaterial. Optical Materials, 2021, 113, 110852.	3.6	29
6	Back Cover Image. InformaÄnÃ-Materiály, 2021, 3, .	17.3	0
7	Editorial: Tunable and Reconfigurable Optical Metamaterials. Frontiers in Physics, 2021, 9, .	2.1	1
8	Fano-Resonant Hybrid Metamaterial for Enhanced Nonlinear Tunability and Hysteresis Behavior. Research, 2021, 2021, 9754083.	5.7	16
9	Thermally reconfigurable Fano resonance in water brick pair metamaterial. Results in Physics, 2021, 28, 104650.	4.1	7
10	Actively Controlled Frequency-Agile Fano-Resonant Metasurface for Broadband and Unity Modulation. Frontiers in Physics, 2021, 9, .	2.1	2
11	Optical Realization of Wave-Based Analog Computing with Metamaterials. Applied Sciences (Switzerland), 2021, 11, 141.	2.5	15
12	Active Control of Terahertz Toroidal Excitations in a Hybrid Metasurface with an Electrically Biased Silicon Layer. Advanced Photonics Research, 2021, 2, 2100103.	3.6	19
13	Coiling-Up Space Metasurface for High-Efficient and Wide-angle Acoustic Wavefront Steering. Frontiers in Materials, 2021, 8, .	2.4	12
14	Multifieldâ€Inspired Tunable Carrier Effects Based on Ferroelectricâ€Silicon PN Heterojunction. Advanced Electronic Materials, 2020, 6, 1900795.	5.1	12
15	Siliconâ€Based Terahertz Metaâ€Devices for Electrical Modulation of Fano Resonance and Transmission Amplitude. Advanced Optical Materials, 2020, 8, 2000449.	7.3	52
16	Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge ₂ Sb ₂ Te ₅ . Nanoscale, 2020, 12, 8758-8767.	5.6	57
17	Actively modulated propagation of electromagnetic wave in hybrid metasurfaces containing graphene. EPJ Applied Metamaterials, 2020, 7, 9.	1.5	3
18	Simulate Deutsch-Jozsa algorithm with metamaterials. Optics Express, 2020, 28, 16230.	3.4	12

#	Article	IF	CITATIONS
19	Titanium dioxide metasurface manipulating high-efficiency and broadband photonic spin Hall effect in visible regime. Nanophotonics, 2020, 9, 4327-4335.	6.0	24
20	EIA metamaterials based on hybrid metal/dielectric structures with dark-mode-enhanced absorption. Optics Express, 2020, 28, 17481.	3.4	10
21	Phaseâ€Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials. Advanced Materials, 2019, 31, e1903206.	21.0	38
22	Highly degenerate photonic flat bands arising from complete graph configurations. Physical Review A, 2019, 100, .	2.5	7
23	Electromagnetically induced transparency in all-dielectric metamaterials: Coupling between magnetic Mie resonance and substrate resonance. Physical Review A, 2019, 100, .	2.5	22
24	Engineering Coilingâ€Up Space Metasurfaces for Broadband Lowâ€Frequency Acoustic Absorption. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900426.	2.4	25
25	Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution. Applied Catalysis B: Environmental, 2019, 246, 21-29.	20.2	61
26	Analysis of terahertz wave nonlinear reflection by an array of double silicon elements placed on a metal substrate. Journal Physics D: Applied Physics, 2019, 52, 355303.	2.8	2
27	Realizing Broadband Transparency via Manipulating the Hybrid Coupling Modes in Metasurfaces for Highâ€Efficiency Metalens. Advanced Optical Materials, 2019, 7, 1900016.	7.3	22
28	Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres. Journal of Materials Science: Materials in Electronics, 2019, 30, 8771-8776.	2.2	48
29	Thermally controllable Mie resonances in a water-based metamaterial. Scientific Reports, 2019, 9, 5417.	3.3	13
30	Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal. Optics Express, 2019, 27, 2837.	3.4	41
31	Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. Journal of Colloid and Interface Science, 2019, 533, 481-491.	9.4	194
32	Graphene Plasmonics: A Platform for 2D Optics. Advanced Optical Materials, 2019, 7, 1800537.	7.3	139
33	Controllable coherent perfect absorber made of liquid metal-based metasurface. Optics Express, 2019, 27, 25974.	3.4	17
34	Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators. Photonics Research, 2019, 7, 955.	7.0	29
35	Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances. ACS Photonics, 2018, 5, 1612-1618.	6.6	123
36	Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technology, 2018, 333, 153-159.	4.2	138

#	Article	IF	CITATIONS
37	Achieving a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi> response in metamaterials by manipulating the toroidal excitations. Physical Review A, 2018, 97, .</mml:math 	2.5	67
38	Broadband Terahertz Absorption in Graphene-Embedded Photonic Crystals. Plasmonics, 2018, 13, 1153-1158.	3.4	36
39	A Review of Tunable Acoustic Metamaterials. Applied Sciences (Switzerland), 2018, 8, 1480.	2.5	94
40	Controlling optical polarization conversion with Ge ₂ Sb ₂ Te ₅ -based phase-change dielectric metamaterials. Nanoscale, 2018, 10, 12054-12061.	5.6	70
41	Ultrathin dual-functional metasurface with transmission and absorption characteristics. Optical Materials Express, 2018, 8, 875.	3.0	6
42	Highâ€Qualityâ€Factor Midâ€Infrared Toroidal Excitation in Folded 3D Metamaterials. Advanced Materials, 2017, 29, 1606298.	21.0	117
43	An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Scientific Reports, 2017, 7, 40441.	3.3	104
44	Metamaterials: Highâ€Qualityâ€Factor Midâ€Infrared Toroidal Excitation in Folded 3D Metamaterials (Adv.) Tj ET	QqQ 8 0 r	gBT /Overlocl
45	Magnetically coupled Fano resonance of dielectric pentamer oligomer. Journal Physics D: Applied Physics, 2017, 50, 275002.	2.8	5
46	Weak coupling between bright and dark resonators with electrical tunability and analysis based on temporal coupled-mode theory. Applied Physics Letters, 2017, 110, .	3.3	34
47	Temperature-Controlled Chameleonlike Cloak. Physical Review X, 2017, 7, .	8.9	21
48	Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure. Current Applied Physics, 2017, 17, 829-834.	2.4	14
49	Theoretical realization of dynamically tunable double plasmonically induced transparency in a graphene-based waveguide structure. Optical Materials, 2017, 72, 632-636.	3.6	7
50	Near-diffraction-limited focusing with gradient high-impedance metasurface. Optical Materials Express, 2017, 7, 1141.	3.0	16
51	Electrically reconfigurable split ring resonator covered by nematic liquid crystal droplet. Optics Express, 2016, 24, 27096.	3.4	7

52	Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase. Optical Materials Express, 2016, 6, 3940.	3.0	59

53	Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies. Optical Materials Express, 2016, 6, 2448.	3.0	38
----	---	-----	----

54 Electrically controlled switch based on Fano resonance micro-structure. , 2016, , .

0

#	Article	IF	CITATIONS
55	Electrically tunable Fano-type resonance of an asymmetric metal wire pair. Optics Express, 2016, 24, 11708.	3.4	19
56	Electrically Tunable Goos–HÃ ¤ chen Effect with Graphene in the Terahertz Regime. Advanced Optical Materials, 2016, 4, 1824-1828.	7.3	144
57	Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Scientific Reports, 2015, 5, 13956.	3.3	115
58	Dynamically tunable Fano resonance in planar structures based on periodically asymmetric graphene nanodisk pair. Physica B: Condensed Matter, 2015, 473, 7-10.	2.7	14
59	Reconfigurable-focus flat lens based on gradient index metamaterials. Journal of Optics (United) Tj ETQq1 1 0.784	1314 rgBT	/Qverlock 1
60	Mechanically stretchable and tunable metamaterial absorber. Applied Physics Letters, 2015, 106, .	3.3	101
61	Tunable Terahertz Meta-Surface with Graphene Cut-Wires. ACS Photonics, 2015, 2, 151-156.	6.6	208
62	Tunable terahertz coherent perfect absorption in a monolayer graphene. Optics Letters, 2014, 39, 6269.	3.3	116
63	Mode propagation in a PT-symmetric gain–metal–loss plasmonic system. Journal of Optics (United) Tj ETQq1	1_0,7843	14grgBT /Ov
64	Simulation of electromagnetically induced transparency like acoustic transmission assisted by PT-symmetry. EPJ Applied Physics, 2013, 62, 11301.	0.7	0
65	Low-loss and high- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> planar metamaterial with toroidal moment. Physical Review B, 2013, 87, .	3.2	153
66	Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Optics Letters, 2013, 38, 5410.	3.3	55
67	Photonic band gap of a graphene-embedded quarter-wave stack. Physical Review B, 2013, 88, .	3.2	72
68	Subwavelength imaging with a fishnet flat lens. Physical Review B, 2013, 88, .	3.2	14
69	One-way Action of Terahertz Surface Plasmons in A Three Layers Axially Uniform Waveguide System. Chinese Journal of Luminescence, 2013, 34, 803-806.	0.5	0
70	Propagation properties of a wave in a disordered multilayered system containing hyperbolic metamaterials. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2995.	2.1	6
71	Extend the omnidirectional electronic gap of Thue-Morse aperiodic gapped graphene superlattices. Applied Physics Letters, 2012, 101, .	3.3	23
72	Dielectric Properties of <scp><scp>Ba</scp></scp> _{0.7} <scp><scp>Sr</scp>_{0.3}<scp><scp>TiO</scp>Film at Terahertz Measured by Metamaterials. Journal of the American Ceramic Society, 2012, 95, 1167-1169.</scp></scp>	scp& <sub:< td=""><td>>3</td></sub:<>	>3

#	Article	IF	CITATIONS
73	Propagation of Surface Plasmon Polaritons in A Ring Resonator with PT-symmetry. Chinese Journal of Luminescence, 2012, 33, 901-904.	0.5	0
74	Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Applied Physics Letters, 2011, 99, .	3.3	235
75	Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures. Optics Express, 2011, 19, 21425.	3.4	25
76	An ultrathin twist-structure polarization transformer based on fish-scale metallic wires. Applied Physics Letters, 2011, 98, .	3.3	88
77	Nonlinear properties of meta-dimer comprised of coupled ring resonators. Journal Physics D: Applied Physics, 2011, 44, 425303.	2.8	18
78	Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms. Applied Physics Letters, 2011, 98, .	3.3	50
79	Broadband negative refraction in stacked fishnet metamaterial. Applied Physics Letters, 2010, 97, .	3.3	33
80	Harvesting Plasmonic Excitations in Graphene for Tunable Terahertz/Infrared Metamaterials. , 0, , .		0
81	Nonlinearly tunable extraordinary optical transmission in a hybird metamaterial. Journal Physics D: Applied Physics, 0, , .	2.8	2