Chia-Rong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application. Journal of Physical Chemistry Letters, 2016, 7, 5028-5035.	4.6	224
2	Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities. ACS Applied Materials & Interfaces, 2018, 10, 33307-33315.	8.0	62
3	Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold. Optics Express, 2011, 19, 2391.	3.4	55
4	An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser. Journal of Materials Chemistry C, 2014, 2, 4388-4394.	5.5	54
5	Temperature-dependent photoluminescence and XPS study of ZnO nanowires grown on flexible Zn foil via thermal oxidation. Superlattices and Microstructures, 2017, 107, 38-43.	3.1	52
6	Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant. Optics Express, 2013, 21, 15765.	3.4	50
7	All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets. Optics Express, 2010, 18, 2406.	3.4	41
8	Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers. Journal of Materials Chemistry C, 2020, 8, 5517-5524.	5.5	40
9	Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch. Optics Express, 2009, 17, 12910.	3.4	39
10	All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye. Optics Express, 2010, 18, 25896.	3.4	39
11	Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films. Applied Physics Letters, 2004, 85, 5822-5824.	3.3	35
12	Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell. Optical Materials Express, 2015, 5, 1469.	3.0	34
13	Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples. Optical Materials Express, 2015, 5, 1419.	3.0	33
14	Continuously tunable intensity modulators with large switching contrasts using liquid crystal elastomer films that are deposited with terahertz metamaterials. Optics Express, 2020, 28, 27676.	3.4	32
15	Optically controllable photonic crystals and passively tunable terahertz metamaterials using dye-doped liquid crystal cells. Journal of Materials Chemistry C, 2018, 6, 4959-4966.	5.5	29
16	Electrically Switchable Fresnel Lens Based on a Liquid Crystal Film with a Polymer Relief Pattern. Japanese Journal of Applied Physics, 2007, 46, 4144-4147.	1.5	28
17	Thermally and Electrically Tunable Lasing Emission and Amplified Spontaneous Emission in a Composite of Inorganic Quantum Dot Nanocrystals and Organic Cholesteric Liquid Crystals. Advanced Optical Materials, 2013, 1, 637-643.	7.3	27
18	Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films. Journal of Chemical Physics, 2007, 127, 141105.	3.0	25

#	Article	IF	CITATIONS
19	Widely tunable photonic bandgap and lasing emission in enantiomorphic cholesteric liquid crystal templates. Journal of Materials Chemistry C, 2017, 5, 3222-3228.	5.5	22
20	Dynamics of photoalignment in azo-dye-doped liquid crystals. Applied Physics Letters, 2008, 93, .	3.3	21
21	Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient. Optics Express, 2009, 17, 22616.	3.4	21
22	Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal. Optics Express, 2014, 22, 9171.	3.4	21
23	Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell. Optics Express, 2014, 22, 29479.	3.4	20
24	Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant. Optics Express, 2010, 18, 9496.	3.4	19
25	Novel dye-doped cholesteric liquid crystal cone lasers with various birefringences and associated tunabilities of lasing feature and performance. Optics Express, 2011, 19, 18199.	3.4	19
26	Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase. Scientific Reports, 2016, 6, 30407.	3.3	19
27	Electrically switchable organo–inorganic hybrid for a white-light laser source. Scientific Reports, 2016, 6, 28363.	3.3	19
28	Toward Fullâ€Color Tunable Chiroptical Electrothermochromic Devices Based on a Supramolecular Chiral Photonic Material. Advanced Optical Materials, 2021, 9, 2001796.	7.3	19
29	Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique. Optics Express, 2016, 24, 3112.	3.4	18
30	A broadban-tunable photonic bandgap and thermally convertible laser with an ultra-low lasing threshold from a refilled chiral polymer template. Journal of Materials Chemistry C, 2019, 7, 4740-4747.	5.5	18
31	Electrically Tunable Liquid-Crystal–Polymer Composite Laser with Symmetric Sandwich Structure. Macromolecules, 2020, 53, 913-921.	4.8	17
32	All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber. Optics Express, 2011, 19, 9676.	3.4	16
33	Photorefractive effect induced by polarization gratings in dye-doped liquid crystals. Optics Letters, 2004, 29, 110.	3.3	15
34	Linear polarization rotators based on dye-doped liquid crystal cells. Applied Physics Letters, 2010, 96, .	3.3	15
35	Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nanogrooves fabricated by nanoimprint lithography. Optical Materials Express, 2014, 4, 234.	3.0	15
36	Compositionally controlled band gap and photoluminescence of ZnSSe nanofibers by electrospinning. CrystEngComm, 2015, 17, 4434-4438.	2.6	15

#	Article	IF	CITATIONS
37	Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer. Optics Letters, 2014, 39, 3516.	3.3	14
38	Microstructure-Stabilized Blue Phase Liquid Crystals. ACS Omega, 2018, 3, 15435-15441.	3.5	14
39	All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye. Optics Express, 2010, 18, 2613.	3.4	12
40	Programmable Engineering of Sunlight-Fueled, Full-Wavelength-Tunable, and Chirality-Invertible Helical Superstructures. ACS Applied Materials & Interfaces, 2021, 13, 55550-55558.	8.0	12
41	Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant. Optics Letters, 2010, 35, 1398.	3.3	11
42	All-optical and polarization-independent spatial filter based on a vertically-aligned polymer-stabilized liquid crystal film with a photoconductive layer. Optics Express, 2009, 17, 22386.	3.4	10
43	Identification of optical nonlinearities of dye-doped nematic and polymer-dispersed liquid crystals using Z-scan technique. Optics Communications, 2010, 283, 323-329.	2.1	10
44	Performance evolution of color cone lasing emissions in dye-doped cholesteric liquid crystals at different fabrication conditions. Optics Express, 2015, 23, 10168.	3.4	10
45	Surface passivation assisted lasing emission in the quantum dots doped cholesteric liquid crystal resonating cavity with polymer template. RSC Advances, 2014, 4, 52804-52807.	3.6	9
46	Passively Tunable Terahertz Filters Using Liquid Crystal Cells Coated with Metamaterials. Coatings, 2021, 11, 381.	2.6	9
47	Controllable pretilt angle of liquid crystals with the formation of microgrooves. Journal Physics D: Applied Physics, 2013, 46, 045102.	2.8	8
48	Multi-wavelength laser tuning based on cholesteric liquid crystals with nanoparticles. Journal Physics D: Applied Physics, 2016, 49, 165102.	2.8	8
49	Biphotonic Laser-Induced Ripple Structures in Dye-Doped Liquid Crystal Films. Japanese Journal of Applied Physics, 2006, 45, 7024-7027.	1.5	7
50	Unique spatial continuously tunable cone laser based on a dye-doped cholesteric liquid crystal with a birefringence gradient. Applied Physics B: Lasers and Optics, 2012, 109, 159-163.	2.2	7
51	Bidirectional growth of ZnO nanowires with high optical properties directly on Zn foil. Thin Solid Films, 2017, 621, 102-107.	1.8	7
52	Microâ€Lifting Jack: Heat―and Lightâ€Fueled 3D Symmetric Deformation of Braggâ€Onionâ€Like Beads with Fu Polymerized Chiral Networks. Advanced Optical Materials, 2021, 9, 2100667.	$ull_{\mathcal{H}_3}$	7
53	Electro- and photo-controllable spatial filter based onÂaÂliquid crystal film with a photoconductive layer. Applied Physics B: Lasers and Optics, 2009, 97, 749-752.	2.2	5
54	Polyvinylbutyral assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnSe4 nanofibers by electrospinning route. Solar Energy Materials and Solar Cells, 2016, 151, 24-29.	6.2	5

#	Article	IF	CITATIONS
55	Circular Polarization and Wavelength Selective Gratings Based on Holographic Cholesteric Liquid Crystal Templates. Advances in Condensed Matter Physics, 2018, 2018, 1-8.	1.1	5
56	Ultraâ€Broadband Tunable Bragg–Berry Optical Vortex Generators of a Circularly Symmetric Chiroptic Structure. Advanced Optical Materials, 0, , 2100746.	7.3	5
57	Optically Tunable Terahertz Metasurfaces Using Liquid Crystal Cells Coated with Photoalignment Layers. Crystals, 2021, 11, 1100.	2.2	5
58	Determination of polar anchoring energy of dye-doped liquid crystals by measuring capacitance. Journal of Applied Physics, 2010, 107, .	2.5	4
59	Electrically tunable prism grating based on a liquid crystal film with a photoconductive layer. Optical Materials Express, 2012, 2, 1791.	3.0	4
60	Effect of Thicknesses of Liquid Crystal Layers on Shift of Resonance Frequencies of Metamaterials. Coatings, 2021, 11, 578.	2.6	4
61	Control of Large-Area Orderliness of a 2D Supramolecular Chiral Microstructure by a 1D Interference Field. ACS Applied Materials & Interfaces, 2021, 13, 44916-44924.	8.0	4
62	Swelling of polydimethylsiloxane in toluene solutions on electromagnetic resonance of metamaterials. Applied Physics Letters, 2019, 115, .	3.3	3
63	All-Optically Controllable Photonic Crystals Based on Chiral-Azobenzene-Doped Blue Phase Liquid Crystals. Crystals, 2020, 10, 906.	2.2	3
64	All-Optical Directional Control of Emission in a Photonic Liquid Crystal Fiber Laser. Journal of Lightwave Technology, 2020, 38, 5149-5156.	4.6	3
65	Wide-band tunable photonic bandgap device and laser in dye-doped liquid crystal refilled cholesteric liquid crystal polymer template system. , 2017, , .		2
66	Thermal and optical manipulation of morphology in cholesteric liquid crystal microdroplets constrained on microfibers. Journal of Molecular Liquids, 2021, 328, 115383.	4.9	2
67	Light‧witching Surface Wettability of Chiral Liquid Crystal Networks by Dynamic Change in Nanoscale Topography. Macromolecular Rapid Communications, 2021, , 2100736.	3.9	2
68	Optically Tunable and Thermally Erasable Terahertz Intensity Modulators Using Dye-Doped Liquid Crystal Cells with Metasurfaces. Crystals, 2021, 11, 1580.	2.2	2
69	Electrohydrodynamics-Induced Abnormal Electro-Optic Characteristics in a Polymer-Dispersed Liquid Crystal Film. Crystals, 2017, 7, 227.	2.2	1
70	All-Optical and Polarization-Independent Tunable Guided-Mode Resonance Filter Based on a Dye-Doped Liquid Crystal Incorporated With Photonic Crystal Nanostructure. Journal of Lightwave Technology, 2020, 38, 820-826.	4.6	1
71	Enantiomorphic double-polymerized chiral polymer composite template for highly efficient energy-saving green window. Polymer, 2020, 200, 122586.	3.8	1
72	. Band-tunable color cone lasing emission based on a dye-doped cholesteric liquid crystal film. , 2010, , .		0

#	Article	IF	CITATIONS
73	Dual-Function Beam Shapers Fabricated by Photoaligned Liquid Crystal Cells. Applied Physics Express, 2011, 4, 052502.	2.4	0
74	Electrically and all-optically controllable random lasers based on dye-doped liquid crystal films. Proceedings of SPIE, 2012, , .	0.8	0
75	External-Voltage-Free Dielectrophoresis of Liquid Crystal Droplets. Crystals, 2017, 7, 202.	2.2	0
76	Micro-/Nanostructure-Stabilized Liquid-Crystalline Blue-Phase. , 2019, , .		0
77	Effect of thin-film interference on resonance spectra of distorted metamaterials. , 2018, , .		0
78	Low-voltage tunable color in full visible region using ferroelectric liquid-crystal-doped cholesteric liquid-crystal smart materials. , 2018, , .		0
79	Controllable Liquid Crystal Micro Tube Laser. Crystals, 2021, 11, 1510.	2.2	0