List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184445/publications.pdf Version: 2024-02-01

LULIA HOFFFLF

#	Article	IF	CITATIONS
1	Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nature Genetics, 2003, 34, 413-420.	21.4	582
2	Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nature Genetics, 2003, 34, 455-459.	21.4	345
3	Mutations in Multiple PKD Genes May Explain Early and Severe Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2011, 22, 2047-2056.	6.1	211
4	ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. Journal of Clinical Investigation, 2013, 123, 3243-3253.	8.2	196
5	A Gene Mutated in Nephronophthisis and Retinitis Pigmentosa Encodes a Novel Protein, Nephroretinin, Conserved in Evolution. American Journal of Human Genetics, 2002, 71, 1161-1167.	6.2	193
6	KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. Journal of Clinical Investigation, 2015, 125, 2375-2384.	8.2	159
7	Evidence of Oligogenic Inheritance in Nephronophthisis. Journal of the American Society of Nephrology: JASN, 2007, 18, 2789-2795.	6.1	141
8	Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid–Resistant Nephrotic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 245-253.	4.5	103
9	Genotype–phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney International, 2011, 80, 1239-1245.	5.2	99
10	Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatric Nephrology, 2019, 34, 1175-1189.	1.7	97
11	Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney International, 2012, 81, 196-200.	5.2	75
12	Phenotypic features of carbohydrate sulfotransferase 3 (CHST3) deficiency in 24 patients: Congenital dislocations and vertebral changes as principal diagnostic features. American Journal of Medical Genetics, Part A, 2010, 152A, 2543-2549.	1.2	67
13	<i>De novo</i> variants in neurodevelopmental disorders—experiences from a tertiary care center. Clinical Genetics, 2021, 100, 14-28.	2.0	64
14	Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria. European Journal of Human Genetics, 2021, 29, 1186-1197.	2.8	61
15	Mutational analysis of theNPHP4 gene in 250 patients with nephronophthisis. Human Mutation, 2005, 25, 411-411.	2.5	60
16	Mapping of Gene Loci for Nephronophthisis Type 4 and Senior-LÃ,ken Syndrome, to Chromosome 1p36. American Journal of Human Genetics, 2002, 70, 1240-1246.	6.2	56
17	Guidelines for Genetic Testing and Management of Alport Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 143-154.	4.5	49
18	Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells. Journal of Biomedical Science, 2005, 12, 827-834.	7.0	48

#	Article	IF	CITATIONS
19	Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2022, 101, 1126-1141.	5.2	46
20	Histone H3.3 beyond cancer: Germline mutations in <i>Histone 3 Family 3A and 3B</i> cause a previously unidentified neurodegenerative disorder in 46 patients. Science Advances, 2020, 6, .	10.3	43
21	Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Molecular Psychiatry, 2021, 26, 2013-2024.	7.9	43
22	Multisystem inflammation and susceptibility to viral infections in human ZNFX1 deficiency. Journal of Allergy and Clinical Immunology, 2021, 148, 381-393.	2.9	40
23	Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). Nephrology Dialysis Transplantation, 2011, 26, 2181-2188.	0.7	36
24	Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome. Gene, 2013, 526, 474-477.	2.2	33
25	Exome Sequencing and Identification of Phenocopies in Patients With Clinically Presumed Hereditary Nephropathies. American Journal of Kidney Diseases, 2020, 76, 460-470.	1.9	33
26	Identification of 47 novel mutations in patients with Alport syndrome and thin basement membrane nephropathy. Pediatric Nephrology, 2016, 31, 941-955.	1.7	32
27	Pseudodominant inheritance of nephronophthisis caused by a homozygous NPHP1 deletion. Pediatric Nephrology, 2011, 26, 967-971.	1.7	26
28	Expanding the mutation spectrum for Fraser syndrome: Identification of a novel heterozygous deletion in FRAS1. Gene, 2013, 520, 194-197.	2.2	24
29	Missense mutations in EYA1 and TCF2 are a rare cause of urinary tract malformations. Nephrology Dialysis Transplantation, 2007, 23, 777-779.	0.7	23
30	Multiple urinary tract malformations with likely recessive inheritance in a large Somalian kindred. Nephrology Dialysis Transplantation, 2004, 19, 3172-3175.	0.7	22
31	Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies. Genetics in Medicine, 2021, 23, 1715-1725.	2.4	22
32	Dealing with the incidental finding of secondary variants by the example of SRNS patients undergoing targeted next-generation sequencing. Pediatric Nephrology, 2016, 31, 73-81.	1.7	19
33	A case report and review of the literature indicate that HMGA2 should be added as a disease gene for Silver-Russell syndrome. Gene, 2018, 663, 110-114.	2.2	18
34	Blood DNA methylation provides an accurate biomarker of <i>KMT2B</i> -related dystonia and predicts onset. Brain, 2022, 145, 644-654.	7.6	18
35	Mapping of a new locus for congenital anomalies of the kidney and urinary tract on chromosome 8q24. Nephrology Dialysis Transplantation, 2010, 25, 1496-1501.	0.7	17
36	Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney International, 2022, 102, 604-612.	5.2	17

#	Article	IF	CITATIONS
37	Heterozygous COL4A3 Variants in Histologically Diagnosed Focal Segmental Glomerulosclerosis. Frontiers in Pediatrics, 2018, 6, 171.	1.9	16
38	Lifelong effect of therapy in young patients with the <i>COL4A5</i> Alport missense variant p.(Gly624Asp): a prospective cohort study. Nephrology Dialysis Transplantation, 2022, 37, 2496-2504.	0.7	16
39	Novel heterozygous COL4A3 mutation in a family with late-onset ESRD. Pediatric Nephrology, 2010, 25, 1539-1542.	1.7	15
40	Identification of a Novel Heterozygous De Novo 7-bp Frameshift Deletion in PBX1 by Whole-Exome Sequencing Causing a Multi-Organ Syndrome Including Bilateral Dysplastic Kidneys and Hypoplastic Clavicles. Frontiers in Pediatrics, 2017, 5, 251.	1.9	14
41	De novo TRIM8 variants impair its protein localization to nuclear bodies and cause developmental delay, epilepsy, and focal segmental glomerulosclerosis. American Journal of Human Genetics, 2021, 108, 357-367.	6.2	14
42	Mutational analysis in 119 families with nephronophthisis. Pediatric Nephrology, 2007, 22, 366-370.	1.7	13
43	Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1. European Journal of Human Genetics, 2021, 29, 411-421.	2.8	13
44	DAAM2 Variants Cause Nephrotic Syndrome via Actin Dysregulation. American Journal of Human Genetics, 2020, 107, 1113-1128.	6.2	12
45	The 2019 and 2021 International Workshops on Alport Syndrome. European Journal of Human Genetics, 2022, 30, 507-516.	2.8	12
46	Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney International, 2022, 102, 592-603.	5.2	12
47	A De Novo Missense Variant in POU3F2 Identified in a Child with Global Developmental Delay. Neuropediatrics, 2018, 49, 401-404.	0.6	11
48	The Hypomorphic Variant p.(Gly624Asp) in COL4A5 as a Possible Cause for an Unexpected Severe Phenotype in a Family With X-Linked Alport Syndrome. Frontiers in Pediatrics, 2019, 7, 485.	1.9	11
49	Identification of disease-causing variants by comprehensive genetic testing with exome sequencing in adults with suspicion of hereditary FSGS. European Journal of Human Genetics, 2021, 29, 262-270.	2.8	11
50	Clinical and histological presentation of 3 siblings with mutations in the NPHP4 gene. American Journal of Kidney Diseases, 2004, 43, 358-364.	1.9	10
51	Foreign body in the bladder mimicking nephritis. Pediatric Nephrology, 2007, 22, 467-470.	1.7	10
52	Truncating <i>Wilms Tumor Suppressor Gene 1</i> Mutation in an XX Female with Adult-Onset Focal Segmental Glomerulosclerosis and Streak Ovaries: A Case Report. Nephron, 2017, 135, 72-76.	1.8	10
53	A novel interstitial deletion of 10q24.2q24.32 in a patient with renal coloboma syndrome. European Journal of Medical Genetics, 2012, 55, 211-215.	1.3	9
54	Identification of a de novo microdeletion 1q44 in a patient with hypogenesis of the corpus callosum, seizures and microcephaly – A case report. Gene, 2017, 616, 41-44.	2.2	9

#	Article	IF	CITATIONS
55	Mutations in INF2 may be associated with renal histology other than focal segmental glomerulosclerosis. Pediatric Nephrology, 2018, 33, 433-437.	1.7	9
56	MAP2 – A Candidate Gene for Epilepsy, Developmental Delay and Behavioral Abnormalities in a Patient With Microdeletion 2q34. Frontiers in Genetics, 2018, 9, 99.	2.3	9
57	Identification of co-occurrence in a patient with Dent's disease and ADA2-deficiency by exome sequencing. Gene, 2018, 649, 23-26.	2.2	8
58	COL4A5-associated X-linked Alport syndrome in a female patient with early inner ear deafness due to a mutation in MYH9. Nephrology Dialysis Transplantation, 2012, 27, 4236-4240.	0.7	7
59	Precise variant interpretation, phenotype ascertainment, and genotype–phenotype correlation of children in the <scp>EARLY PROâ€TECT</scp> Alport trial. Clinical Genetics, 2021, 99, 143-156.	2.0	7
60	Clonal hematopoiesis as a pitfall in germline variant interpretation in the context of Mendelian disorders. Human Molecular Genetics, 2022, 31, 2386-2395.	2.9	7
61	Haemophilus paraphrophilus, a rare cause of intracerebral abscess in children. European Journal of Pediatrics, 2008, 167, 629-632.	2.7	6
62	Congenital lymphedema as a rare and first symptom of tuberous sclerosis complex. Gene, 2020, 753, 144815.	2.2	6
63	A novel pathogenic variant in MYO18B associating early-onset muscular hypotonia, and characteristic dysmorphic features, delineation of the phenotypic spectrum of MYO18B-related conditions. Gene, 2020, 742, 144542.	2.2	6
64	Reâ€sequencing of candidate genes <scp>FOXF1</scp> , <scp>HSPA6</scp> , <scp>HAAO</scp> , and <scp>KYNU</scp> in 522 individuals with <scp>VATER</scp> / <scp>VACTERL</scp> , <scp>VACTER</scp> / <scp>VACTERL</scp> â€ike association, and isolated anorectal malformation. Birth Defects Research, 2022, 114, 478-486.	1.5	6
65	Cyclosporine A responsive congenital nephrotic syndrome with single heterozygous variants in NPHS1, NPHS2, and PLCE1. Pediatric Nephrology, 2018, 33, 1269-1272.	1.7	5
66	Refining Kidney Survival in 383 Genetically Characterized Patients With Nephronophthisis. Kidney International Reports, 2022, 7, 2016-2028.	0.8	5
67	Disorders of sex development and Diamond-Blackfan anemia: is there an association?. Pediatric Nephrology, 2010, 25, 1255-1261.	1.7	4
68	Mosaic trisomy 12 diagnosed in a female patient: clinical features, genetic analysis, and review of the literature. World Journal of Pediatrics, 2021, 17, 438-448.	1.8	4
69	Steroid-resistentes nephrotisches Syndrom. Medizinische Genetik, 2018, 30, 410-421.	0.2	3
70	BK virus induced nephritis in a boy with acute myeloid leukaemia undergoing bone marrow transplantation. CKJ: Clinical Kidney Journal, 2008, 1, 336-339.	2.9	2
71	Reduced Methotrexate Clearance and Renal Impairment in a Boy With Osteosarcoma and Earlier Undetected Autosomal Dominant Polycystic Kidney Disease (ADPKD). Journal of Pediatric Hematology/Oncology, 2010, 32, e314-e316.	0.6	2
72	Different factor H-related protein patterns in siblings with typical hemolytic uremic syndrome. Pediatric Nephrology, 2011, 26, 1345-1347.	1.7	2

#	Article	IF	CITATIONS
73	Rare co-occurrence of osteogenesis imperfecta type I and autosomal dominant polycystic kidney disease. World Journal of Pediatrics, 2016, 12, 501-503.	1.8	2
74	Correlation of PET-MRI, pathology, LOH and surgical success in a case of CHI with atypical large pancreatic focus. Journal of the Endocrine Society, 2022, 6, bvac056.	0.2	2
75	Renal and Skeletal Anomalies in a Cohort of Individuals With Clinically Presumed Hereditary Nephropathy Analyzed by Molecular Genetic Testing. Frontiers in Genetics, 2021, 12, 642849.	2.3	1
76	Exome sequencing in individuals with cardiovascular laterality defects identifies potential candidate genes. European Journal of Human Genetics, 2022, , .	2.8	1
77	No Impact of the Analytical Method Used for Determining Cystatin C on Estimating Glomerular Filtration Rate in Children. Frontiers in Pediatrics, 2017, 5, 66.	1.9	0
78	Genetische Ursachen und Therapie beim Alport-Syndrom. Medizinische Genetik, 2019, 30, 429-437.	0.2	0