
Tomoyoshi Suenobu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Lived Charge Separation and Applications in Artificial Photosynthesis. Accounts of Chemical Research, 2014, 47, 1455-1464.	15.6	334
2	Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in pH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridiumâ^'Ruthenium Complex in Water. Journal of the American Chemical Society, 2010, 132, 1496-1497.	13.7	252
3	Selective One-Electron and Two-Electron Reduction of C60 with NADH and NAD Dimer Analogues via Photoinduced Electron Transfer. Journal of the American Chemical Society, 1998, 120, 8060-8068.	13.7	221
4	Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy and Environmental Science, 2012, 5, 7606.	30.8	208
5	Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H ₂ and H/D Exchange with a Waterâ€Soluble Rhodium Complex in Aqueous Solution. ChemSusChem, 2008, 1, 827-834.	6.8	201
6	Catalytic Mechanism of Water Oxidation with Single-Site Ruthenium–Heteropolytungstate Complexes. Journal of the American Chemical Society, 2011, 133, 11605-11613.	13.7	200
7	Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy and Environmental Science, 2013, 6, 3756.	30.8	200
8	Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure. Energy and Environmental Science, 2012, 5, 7360.	30.8	192
9	Photoalkylation of 10-Alkylacridinium Ion via a Charge-Shift Type of Photoinduced Electron Transfer Controlled by Solvent Polarity. Journal of the American Chemical Society, 2001, 123, 8459-8467.	13.7	175
10	Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy and Environmental Science, 2011, 4, 2754.	30.8	169
11	Fundamental Electron-Transfer Properties of Non-heme Oxoiron(IV) Complexes. Journal of the American Chemical Society, 2008, 130, 434-435.	13.7	144
12	Efficient Catalytic Interconversion between NADH and NAD ⁺ Accompanied by Generation and Consumption of Hydrogen with a Water-Soluble Iridium Complex at Ambient Pressure and Temperature. Journal of the American Chemical Society, 2012, 134, 367-374.	13.7	142
13	Cupric Superoxo-Mediated Intermolecular Câ^'H Activation Chemistry. Journal of the American Chemical Society, 2011, 133, 1702-1705.	13.7	141
14	Hydride Transfer from 9-Substituted 10-Methyl-9,10-dihydroacridines to Hydride Acceptors via Charge-Transfer Complexes and Sequential Electronâ~'Protonâ~'Electron Transfer. A Negative Temperature Dependence of the Rates. Journal of the American Chemical Society, 2000, 122, 4286-4294.	13.7	138
15	Mononuclear Copper Complex-Catalyzed Four-Electron Reduction of Oxygen. Journal of the American Chemical Society, 2010, 132, 6874-6875.	13.7	127
16	Formation of C60 Adducts with Two Different Alkyl Groups via Combination of Electron Transfer and SN2 Reactions. Journal of the American Chemical Society, 1998, 120, 9220-9227.	13.7	125
17	Addition of Ketene Silyl Acetals to the Triplet Excited State of C60 via Photoinduced Electron Transfer Leading to the Fullereneacetates. Journal of the American Chemical Society, 1995, 117, 11134-11141.	13.7	115
18	Photocatalytic Production of Hydrogen by Disproportionation of Oneâ€Electronâ€Reduced Rhodium and Iridium–Ruthenium Complexes in Water. Angewandte Chemie - International Edition, 2011, 50, 728-731.	13.8	114

Томоуозні Ѕиенови

#	Article	IF	CITATIONS
19	Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Transactions, 2013, 42, 18-28.	3.3	111
20	Assembly and Stepwise Oxidation of Interpenetrated Coordination Cages Based on Phenothiazine. Angewandte Chemie - International Edition, 2013, 52, 10102-10106.	13.8	108
21	Chemical Generation of C602-and Electron Transfer Mechanism for the Reactions with Alkyl Bromides. The Journal of Physical Chemistry, 1996, 100, 16327-16335.	2.9	106
22	Mechanisms of Hydrogen-, Oxygen-, and Electron-Transfer Reactions of Cumylperoxyl Radical. Journal of the American Chemical Society, 2003, 125, 9074-9082.	13.7	93
23	Electron-Transfer Oxidation Properties of DNA Bases and DNA Oligomers. Journal of Physical Chemistry A, 2005, 109, 3285-3294.	2.5	93
24	Synthesis and Spectroscopic and Electrochemical Characterization of Di- and Tetrasubstituted C60 Derivatives. Journal of Physical Chemistry A, 1998, 102, 3898-3906.	2.5	81
25	Efficient Catalysis of Rare-Earth Metal Ions in Photoinduced Electron-Transfer Oxidation of Benzyl Alcohols by a Flavin Analogue. Journal of Physical Chemistry A, 2001, 105, 10501-10510.	2.5	81
26	Hydrogen Evolution from Aliphatic Alcohols and 1,4-Selective Hydrogenation of NAD ⁺ Catalyzed by a [C,N] and a [C,C] Cyclometalated Organoiridium Complex at Room Temperature in Water. Journal of the American Chemical Society, 2012, 134, 9417-9427.	13.7	79
27	Electron-Transfer Properties of C60 and tert-Butyl-C60 Radical. Journal of the American Chemical Society, 1999, 121, 3468-3474.	13.7	78
28	Mechanistic Borderline of One-Step Hydrogen Atom Transfer versus Stepwise Sc ³⁺ -Coupled Electron Transfer from Benzyl Alcohol Derivatives to a Non-Heme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2012, 51, 10025-10036.	4.0	76
29	Photocatalytic Generation of a Non-Heme Oxoiron(IV) Complex with Water as an Oxygen Source. Journal of the American Chemical Society, 2011, 133, 3249-3251.	13.7	74
30	Metal Ion-Catalyzed Cycloaddition vs Hydride Transfer Reactions of NADH Analogues withp-Benzoquinones. Journal of the American Chemical Society, 2001, 123, 10191-10199.	13.7	73
31	Electrosynthesis and Structural Characterization of Two (C6H5CH2)4C60Isomers. Journal of the American Chemical Society, 2000, 122, 563-570.	13.7	71
32	Mechanisms of Electron-Transfer Oxidation of NADH Analogues and Chemiluminescence. Detection of the Keto and Enol Radical Cations. Journal of the American Chemical Society, 2003, 125, 4808-4816.	13.7	70
33	Formation of a long-lived electron-transfer state in mesoporous silica-alumina composites enhances photocatalytic oxygenation reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15572-15577.	7.1	69
34	Change in Spin State and Enhancement of Redox Reactivity of Photoexcited States of Aromatic Carbonyl Compounds by Complexation with Metal Ion Salts Acting as Lewis Acids. Lewis Acid-Catalyzed Photoaddition of Benzyltrimethylsilane and Tetramethyltin via Photoinduced Electron Transfer. Journal of the American Chemical Society, 2001, 123, 7756-7766.	13.7	68
35	Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 12404-12412.	10.3	67
36	ESR Spectra of Superoxide Anionâ~'Scandium Complexes Detectable in Fluid Solution. Journal of the American Chemical Society, 1999, 121, 1605-1606.	13.7	66

#	Article	IF	CITATIONS
37	Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catalysis Science and Technology, 2016, 6, 681-684.	4.1	66
38	Electron-Transfer Kinetics for Generation of Organoiron(IV) Porphyrins and the Iron(IV) Porphyrin π Radical Cations. Journal of the American Chemical Society, 1999, 121, 785-790.	13.7	63
39	Effect of Addition Pattern on the Electrochemical and Spectroscopic Properties of Neutral and Reduced 1,2- and 1,4-(C6H5CH2)2C60 Isomers. Journal of Physical Chemistry A, 2000, 104, 3878-3883.	2.5	58
40	Redox-induced reversible metal assembly through translocation and reversible ligand coupling in tetranuclear metal sandwich frameworks. Nature Chemistry, 2012, 4, 52-58.	13.6	57
41	Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen by Using a Waterâ€Soluble Iridium Complex and Flavin Mononucleotide. Angewandte Chemie - International Edition, 2013, 52, 12327-12331.	13.8	57
42	Scandium Ion-Promoted Photoinduced Electron-Transfer Oxidation of Fullerenes and Derivatives by p-Chloranil and p-Benzoquinone. Journal of the American Chemical Society, 2001, 123, 12458-12465.	13.7	56
43	Scandium Ion-Promoted Photoinduced Electron Transfer from Electron Donors to Acridine and Pyrene. Essential Role of Scandium Ion in Photocatalytic Oxygenation of Hexamethylbenzene. Journal of the American Chemical Society, 2004, 126, 7585-7594.	13.7	56
44	Synthesis and Structural, Electrochemical, and Optical Properties of Ru(II) Complexes with Azobis(2,2â€~-bipyridine)s. Inorganic Chemistry, 2003, 42, 3057-3066.	4.0	55
45	Binding Modes in Metal Ion Complexes of Quinones and Semiquinone Radical Anions: Electron-Transfer Reactivity. ChemPhysChem, 2006, 7, 942-954.	2.1	54
46	Formation of Radical Anions in the Reaction ofp-Benzoquinone and C60with Alkoxide Ions. Journal of the American Chemical Society, 1998, 120, 6673-6680.	13.7	53
47	Structural and Spectroscopic Features of acis(Hydroxo)-Felll-(Carboxylato) Configuration as an Active Site Model for Lipoxygenases. Inorganic Chemistry, 2002, 41, 5513-5520.	4.0	53
48	Electron Transfer Mechanism of Organocobalt Porphyrins. Site of Electron Transfer, Migration of Organic Groups, and Cobaltâ^'Carbon Bond Energies in Different Oxidation States. Journal of the American Chemical Society, 1998, 120, 2880-2889.	13.7	52
49	Excited-State Deprotonation and H/D Exchange of an Iridium Hydride Complex. Angewandte Chemie - International Edition, 2003, 42, 5492-5495.	13.8	52
50	Oxidation Mechanism of NAD Dimer Model Compounds. Chemistry Letters, 1997, 26, 567-568.	1.3	50
51	Stepwise Bond Formation in Photochemical and Thermal Dielsâ``Alder Reactions of C60 with Danishefsky's Dienes. Journal of the American Chemical Society, 2000, 122, 2236-2243.	13.7	49
52	Direct Observation of Radical Intermediates While Investigating the Redox Behavior of Thiamin Coenzyme Models. Angewandte Chemie - International Edition, 1998, 37, 992-994.	13.8	48
53	Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing Fe ^{II} and Ru ^{II} Incorporated in Mesoporous Silica–Alumina. Inorganic Chemistry, 2016, 55, 5780-5786.	4.0	46
54	Scandium Ion-Promoted Reduction of Heterocyclic NN Double Bond. Hydride Transfer vs Electron Transfer. Journal of the American Chemical Society, 2002, 124, 12566-12573.	13.7	45

#	Article	IF	CITATIONS
55	Catalytic hydrogen production from paraformaldehyde and water using an organoiridium complex. Chemical Communications, 2015, 51, 1670-1672.	4.1	45
56	Highly Self-Organized Electron Transfer from an Iridium Complex top-Benzoquinone Due to Formation of a l€-Dimer Radical Anion Complex Triply Bridged by Scandium Ions. Journal of the American Chemical Society, 2003, 125, 12090-12091.	13.7	44
57	Solid state photochemistry for fullerene functionalization: Solid state photoinduced electron transfer in the Diels-Alder reaction with anthracenes. Tetrahedron Letters, 1998, 39, 3733-3736.	1.4	43
58	Mechanism of enhancement effect of dendrimer on transdermal drug permeation through polyhydroxyalkanoate matrix. Journal of Bioscience and Bioengineering, 2003, 96, 537-540.	2.2	43
59	Contrasting Effects of Axial Ligands on Electronâ€Transfer Versus Protonâ€Coupled Electronâ€Transfer Reactions of Nonheme Oxoiron(IV) Complexes. Chemistry - A European Journal, 2010, 16, 354-361.	3.3	42
60	Selective CO Production in Photoelectrochemical Reduction of CO ₂ with a Cobalt Chlorin Complex Adsorbed on Multiwalled Carbon Nanotubes in Water. ACS Energy Letters, 2017, 2, 532-536.	17.4	40
61	Selectivity switch in the aerobic oxygenation of sulfides photocatalysed by visible-light-responsive decavanadate. Green Chemistry, 2020, 22, 3896-3905.	9.0	40
62	Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel. Chemical Communications, 2017, 53, 3473-3476.	4.1	37
63	Effects of Lowering Symmetry on the ESR Spectra of Radical Anions of Fullerene Derivatives and the Reduction Potentials. Journal of Physical Chemistry A, 2000, 104, 10688-10694.	2.5	32
64	Extremely Slow Long-Range Electron Transfer Reactions Across Zeoliteâ^'Solution Interface. Journal of the American Chemical Society, 2001, 123, 11331-11332.	13.7	32
65	Kinetic and Thermodynamic Studies of Iron(III) and Iron(IV) Ïf-Bonded Porphyrins. Formation and Reactivity of [(OEP)Fe(R)]n+, Where OEP Is the Dianion of Octaethylporphyrin (n= 0, 1, 2, 3) and R = C6H5, 3,4,5-C6F3H2, 2,4,6-C6F3H2, C6F4H, or C6F5. Inorganic Chemistry, 1998, 37, 1759-1766.	4.0	31
66	Enhanced Reactivity of C70in the Photochemical Reactions with NADH and NAD Dimer Analogues As Compared to C60via Photoinduced Electron Transfer. Journal of Physical Chemistry A, 1999, 103, 5935-5941.	2.5	30
67	The long-lived electron transfer state of the 2-phenyl-4-(1-naphthyl)quinolinium ion incorporated into nanosized mesoporous silica–alumina acting as a robust photocatalyst in water. Chemical Communications, 2013, 49, 5132.	4.1	30
68	Photochemical Reactions of Coenzyme PQQ (Pyrroloquinolinequinone) and Analogues with Benzyl Alcohol Derivatives via Photoinduced Electron Transfer. Journal of the American Chemical Society, 2000, 122, 8435-8443.	13.7	29
69	Regioreversed Thermal and Photochemical Reduction of 10-Methylacridinium and 1-Methylquinolinium Ions by Organosilanes and Oraganostannanes. Journal of Physical Chemistry A, 2001, 105, 1857-1868.	2.5	29
70	Selective two-electron reduction of C60 by 10-methyl-9,10-dihydroacridine via photoinduced electron transfer. Chemical Communications, 1997, , 291-292.	4.1	28
71	Electrogeneration and Characterization of (C6H5CH2)2C70. Journal of Physical Chemistry A, 2000, 104, 2902-2907.	2.5	28
72	Metallocene bis(perfluoroalkanesulfonate)s as air-stable cationic Lewis acids. Journal of Organometallic Chemistry, 2009, 694, 1524-1528.	1.8	26

Томоуозні Ѕиенови

#	Article	IF	CITATIONS
73	Production of hydrogen peroxide by combination of semiconductor-photocatalysed oxidation of water and photocatalytic two-electron reduction of dioxygen. RSC Advances, 2016, 6, 42041-42044.	3.6	26
74	Photocatalytic water oxidation by persulphate with a Ca ²⁺ ion-incorporated polymeric cobalt cyanide complex affording O ₂ with 200% quantum efficiency. Chemical Communications, 2017, 53, 3418-3421.	4.1	26
75	Electron Transfer Properties of Singlet Oxygen and Promoting Effects of Scandium Ion. Journal of Physical Chemistry A, 2002, 106, 1241-1247.	2.5	25
76	Correlation between the electronic structure and hydrogen absorption characteristics in rare earth intermetallic compound hydrides. Journal of Alloys and Compounds, 1995, 221, 200-206.	5.5	24
77	Direct Detection of Radical Cations of NADH Analogues. Journal of the American Chemical Society, 2002, 124, 14538-14539.	13.7	24
78	Formation of the Long-Lived Charge-Separated State of the 9-Mesityl-10-methylacridinium Cation Incorporated into Mesoporous Aluminosilicate at High Temperatures. Journal of Physical Chemistry C, 2014, 118, 24188-24196.	3.1	24
79	Bridged Stilbenes: AIEgens Designed via a Simple Strategy to Control the Nonâ€radiative Decay Pathway. Angewandte Chemie - International Edition, 2020, 59, 10566-10573.	13.8	24
80	Significant Enhancement of Electron Transfer Reduction of NAD+Analogues by Complexation with Scandium Ion and the Detection of the Radical Intermediateâ `Scandium Ion Complex. Journal of the American Chemical Society, 2002, 124, 9181-9188.	13.7	23
81	Thermochromism of Metal Ion Complexes of Semiquinone Radical Anions. Control of Equilibria between Diamagnetic and Paramagnetic Species by Lewis Acids. Journal of Physical Chemistry A, 2005, 109, 9356-9362.	2.5	22
82	Heterogeneous catalase-like activity of gold(<scp>i</scp>)–cobalt(<scp>iii</scp>) metallosupramolecular ionic crystals. Chemical Science, 2017, 8, 2671-2676.	7.4	22
83	Redox Behavior of Active Aldehydes Derived from Thiamin Coenzyme Analogs. Chemistry Letters, 1997, 26, 707-708.	1.3	21
84	Switchable Antenna: A Starâ€Shaped Ruthenium/Osmium Tetranuclear Complex with Azobis(bipyridine) Bridging Ligands. Chemistry - A European Journal, 2008, 14, 2709-2718.	3.3	21
85	Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O ₂ Ejection and Formation of Mixed-Valent Cu ^I Cu ^{II} –Superoxide Intermediates. Journal of the American Chemical Society, 2015, 137, 15865-15874.	13.7	21
86	Formic Acid Acting as an Efficient Oxygen Scavenger in Four-Electron Reduction of Oxygen Catalyzed by a Heterodinuclear Iridiumâ^Ruthenium Complex in Water. Journal of the American Chemical Society, 2010, 132, 11866-11867.	13.7	20
87	Addition of Group 14 organometallic compounds to C60 via photoinduced electron transfer. Direct detection of radical ion pair intermediates. Journal of Organometallic Chemistry, 1999, 574, 32-39.	1.8	19
88	Catalytic Formation of Hydrogen Peroxide from Coenzyme NADH and Dioxygen with a Water-Soluble Iridium Complex and a Ubiquinone Coenzyme Analogue. Inorganic Chemistry, 2016, 55, 7747-7754.	4.0	19
89	Quantitative Evaluation of Lewis Acidity of Organotin Compounds and the Catalytic Reactivity in Electron Transfer. Chemistry Letters, 2001, 30, 978-979.	1.3	18
90	A Vanadium Porphyrin with Temperatureâ€Dependent Phase Transformation: Synthesis, Crystal Structures, Supramolecular Motifs and Properties. Chemistry - an Asian Journal, 2011, 6, 1416-1422.	3.3	17

#	Article	IF	CITATIONS
91	Smart Network Polymers with Bis(piperidyl)naphthalene Cross-Linkers: Selective Fluorescence Quenching and Photodegradation in the Presence of Trichloromethyl-Containing Chloroalkanes. Macromolecules, 2017, 50, 3544-3556.	4.8	17
92	Activation of electron transfer reduction of p-benzoquinone derivatives by intermolecular regioselective hydrogen bond formation. Chemical Communications, 2002, , 1984-1985.	4.1	16
93	Mechanism of Scandium Ion Catalyzed Dielsâ^'Alder Reaction of Anthracenes with Methyl Vinyl Ketone. Journal of Physical Chemistry A, 2005, 109, 3174-3181.	2.5	14
94	The local structure around hydrogen atoms in a hydrogenated amorphous LaNi5.0 film studied by neutron diffraction. Journal of Alloys and Compounds, 1995, 221, 212-217.	5.5	13
95	Remarkable effects of counter ions on scandium ion-promoted electron transfer reactions. Chemical Communications, 2003, , 1070-1071.	4.1	13
96	Size-selective incorporation of donor–acceptor linked dyad cations into zeolite Y and long-lived charge separation. RSC Advances, 2015, 5, 45582-45585.	3.6	13
97	Photoinduced charge-separation using 10-methylacridinium ion loaded in zeolite Y as a photocatalyst with negligible back electron transfer across the zeolite–solution interface. Chemical Communications, 1996, , 213-214.	4.1	12
98	Formation of C60Radical Cation in Iron(III)-Exchanged Zeolite Y. Chemistry Letters, 1997, 26, 875-876.	1.3	11
99	Splitting of Degenerate Orbitals of Dibenzyl and Tetrabenzyl Adducts of C60:  ESR of the Radical Anions and the Rotation Barriers of Benzyl Groups. Journal of Physical Chemistry A, 2000, 104, 2908-2913.	2.5	11
100	Catalytic oxidation of formic acid by dioxygen with an organoiridium complex. Catalysis Science and Technology, 2014, 4, 3636-3639.	4.1	11
101	Studies on local structure in hydrogenated amorphous LaNi5.0 films using extended X-ray absorption fine structure. Journal of Alloys and Compounds, 1993, 190, 273-277.	5.5	9
102	Nanofabrication of a Solid‣tate, Mesoporous Nanoparticle Composite for Efficient Photocatalytic Hydrogen Generation. ChemPlusChem, 2016, 81, 521-525.	2.8	9
103	Synthesis of fluorescent polycarbonates with highly twisted <i>N</i> , <i>N</i> -,bis(dialkylamino)anthracene AIE luminogens in the main chain. RSC Advances, 2019, 9, 21733-21740.	3.6	9
104	Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation. Physical Chemistry Chemical Physics, 2011, 13, 17960.	2.8	8
	Reaction of Oxygen with the Singlet Excited State of $[\langle i \rangle n \langle i \rangle]$ Cycloparaphenylenes ($\langle i \rangle n \langle i \rangle = 9, 12,$) Tj ETQq1	1 0.7843	14 rgBT /Ov
105	Subnanoseconds to Microseconds by the Randomly-Interleaved-Pulse-Train Method. Journal of Physical Chemistry A. 2020. 124. 46-55.	2.5	7
106	Single Electron Transfer Diels-Alder Reaction of Fullerene with Danishefsky's Diene. Synlett, 1999, 1999, 1130-1132.	1.8	6
107	Influence of pH on the decay of β-carotene radical cation in aqueous Triton X-100: A laser flash photolysis study. Journal of Photochemistry and Photobiology B: Biology, 2015, 146, 68-73.	3.8	6
108	Effect of Deuteration on Relaxation Dynamics of the Perylene Excimer Studied by Subnanosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 1359-1366.	2.5	6

Томоуозні Ѕиенови

#	Article	IF	CITATIONS
109	Substituent Effect of 1,4-Benzenedicarbonitriles as Sensitizers on the Photoinduced Electron Transfer Reactions in Alcohol. Bulletin of the Chemical Society of Japan, 1997, 70, 2269-2277.	3.2	5
110	Dehydrogenation vs Oxygenation in Photosensitized Oxidation of 9-Substituted 10-Methyl-9,10-dihydroacridine in the Presence of Scandium Ion. Journal of Physical Chemistry A, 2002, 106, 1465-1472.	2.5	5
111	Effect of reabsorption of fluorescence on transient absorption measurements. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117127.	3.9	5
112	Solution-processable reduced graphene oxide template layer for molecular orientation control of organic semiconductors. RSC Advances, 2019, 9, 32940-32945.	3.6	5
113	High Vertical Carrier Mobilities of Organic Semiconductors Due to a Deposited Laid-Down Herringbone Structure Induced by a Reduced Graphene Oxide Template. ACS Applied Materials & Interfaces, 2020, 12, 9489-9497.	8.0	5
114	Bridged Stilbenes: AlEgens Designed via a Simple Strategy to Control the Nonâ€radiative Decay Pathway. Angewandte Chemie, 2020, 132, 10653-10660.	2.0	5
115	Extended X-Ray Absorption Fine Structure Studies on Local Structure in Amorphous LaNi5.0Films. Bulletin of the Chemical Society of Japan, 1991, 64, 3522-3527.	3.2	4
116	Metal Ion-Complexes ofα,β-Unsaturated Ketones Acting as Actual Reactive Species in Michael Addition of Ketene Silyl Acetal. Chemistry Letters, 1997, 26, 667-668.	1.3	4
117	Change of Interlayer Exchange Coupling in Fe/Y Multilayers by Hydrogenation. Japanese Journal of Applied Physics, 2005, 44, 158-162.	1.5	4
118	Delocalization of positive charge in aromatic liquids studied by subnanosecond near-infrared transient absorption spectroscopy. Chemical Physics Letters, 2019, 731, 136578.	2.6	4
119	X-ray Absorption Fine Structure Studies on an Amorphous LaNi5.0Film Prepared by Reactive Sputtering. Japanese Journal of Applied Physics, 1993, 32, 679.	1.5	4
120	Interlayer Exchange Coupling of Fe/Y Multilayers. Japanese Journal of Applied Physics, 2003, 42, L291-L293.	1.5	3
121	A metalloporphyrinic compound with a high selectivity for N2 and CO2 separation. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1225-1231.	0.8	3
122	Spectroscopic properties of push-pull 2-(4-carboxyphenyl)-6-dimethylaminobenzothiazole derivatives in solution and the solid state. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 324-332.	3.9	3
123	Structural Studies on Amorphous LaNi5.0Films as Prepared in Different Methods. Japanese Journal of Applied Physics, 1993, 32, 682.	1.5	3
124	Effect of the MIS structure with MgF ₂ on CELIV measurements. Japanese Journal of Applied Physics, 2020, 59, SDDB01.	1.5	3
125	Titelbild: Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen by Using a Water-Soluble Iridium Complex and Flavin Mononucleotide (Angew. Chem. 47/2013). Angewandte Chemie, 2013, 125, 12417-12417.	2.0	0
126	Kinetics and Mechanisms of Reduction of Protons and Carbon Dioxide Catalyzed by Metal Complexes and Nanoparticles. Green Chemistry and Sustainable Technology, 2015, , 313-345.	0.7	0