Manuel Porcar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184102/publications.pdf

Version: 2024-02-01

		304743	3	15739
89	1,879	22		38
papers	citations	h-index		g-index
103	103	103		2093
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Living in a bottle: Bacteria from sedimentâ€associated Mediterranean waste and potential growth on polyethylene terephthalate. MicrobiologyOpen, 2022, 11, e1259.	3.0	13
2	Sagittula salina sp. nov., isolated from marine waste. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	4
3	The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. Npj Biofilms and Microbiomes, 2022, 8, 32.	6.4	6
4	Biological Standards and Biosecurity: The Unexplored Link. NATO Science for Peace and Security Series C: Environmental Security, 2021, , 59-66.	0.2	0
5	The microbial <i>terroir</i> : open questions on the Nagoya protocol applied to microbial resources. Microbial Biotechnology, 2021, 14, 1878-1880.	4.2	4
6	Belnapia mucosa sp. nov. and Belnapia arida sp. nov., isolated from desert biocrust. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	7
7	Xerotolerance: A New Property in Exiguobacterium Genus. Microorganisms, 2021, 9, 2455.	3.6	8
8	A Round Trip to the Desert: In situ Nanopore Sequencing Informs Targeted Bioprospecting. Frontiers in Microbiology, 2021, 12, 768240.	3.5	10
9	Ammonia removal during leach-bed acidification leads to optimized organic acid production from chicken manure. Renewable Energy, 2020, 146, 1021-1030.	8.9	12
10	Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Systematic and Applied Microbiology, 2020, 43, 126024.	2.8	9
11	Artâ€omics: multiâ€omics meet archaeology and art conservation. Microbial Biotechnology, 2020, 13, 435-441.	4.2	12
12	The rose and the name: the unresolved debate on biotechnological terms. Microbial Biotechnology, 2020, 13, 305-310.	4.2	2
13	The wasted chewing gum bacteriome. Scientific Reports, 2020, 10, 16846.	3.3	10
14	Extremophilic microbial communities on photovoltaic panel surfaces: a twoâ€year study. Microbial Biotechnology, 2020, 13, 1819-1830.	4.2	13
15	Kineococcus vitellinus sp. nov., Kineococcus indalonis sp. nov. and Kineococcus siccus sp. nov., Isolated Nearby the Tabernas Desert (AlmerÃa, Spain). Microorganisms, 2020, 8, 1547.	3.6	15
16	A lab in the field: applications of real-time, in situ metagenomic sequencing. Biology Methods and Protocols, 2020, 5, bpaa016.	2.2	10
17	Complete Genome Sequence of a New Clostridium sp. Isolated from Anaerobic Digestion and Biomethanation. Microbiology Resource Announcements, 2020, 9, .	0.6	0
18	Chemically Stressed Bacterial Communities in Anaerobic Digesters Exhibit Resilience and Ecological Flexibility. Frontiers in Microbiology, 2020, 11, 867.	3.5	12

#	Article	IF	CITATIONS
19	High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Frontiers in Microbiology, 2020, 11, 583120.	3.5	34
20	The long journey towards standards for engineering biosystems. EMBO Reports, 2020, 21, e50521.	4.5	46
21	Bioprospecting the Solar Panel Microbiome: High-Throughput Screening for Antioxidant Bacteria in a Caenorhabditis elegans Model. Frontiers in Microbiology, 2019, 10, 986.	3 . 5	6
22	Microbial communities of the Mediterranean rocky shore: ecology and biotechnological potential of the seaâ€land transition. Microbial Biotechnology, 2019, 12, 1359-1370.	4.2	4
23	Synthetic microbiology as a source of new enterprises and job creation: a Mediterranean perspective. Microbial Biotechnology, 2019, 12, 8-10.	4.2	2
24	Thermoelectric heat exchange and growth regulation in a continuous yeast culture. MicrobiologyOpen, 2019, 8, e00648.	3.0	3
25	The Hidden Charm of Life. Life, 2019, 9, 5.	2.4	3
26	Words, images and gender. EMBO Reports, 2019, 20, e48401.	4.5	3
27	Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis. Genome Announcements, 2018, 6, .	0.8	7
28	Microbial communities involved in biogas production exhibit high resilience to heat shocks. Bioresource Technology, 2018, 249, 1074-1079.	9.6	21
29	Polar solar panels: <scp>A</scp> rctic and <scp>A</scp> ntarctic microbiomes display similar taxonomic profiles. Environmental Microbiology Reports, 2018, 10, 75-79.	2.4	25
30	Microbial Ecology on Solar Panels in Berkeley, CA, United States. Frontiers in Microbiology, 2018, 9, 3043.	3.5	23
31	Proteomic and metagenomic insights into prehistoric Spanish Levantine Rock Art. Scientific Reports, 2018, 8, 10011.	3.3	20
32	Creating life and the media: translations and echoes. Life Sciences, Society and Policy, 2018, 14, 19.	3.2	4
33	Methanogenic community shifts during the transition from sewage mono-digestion to co-digestion of grass biomass. Bioresource Technology, 2018, 265, 275-281.	9.6	25
34	Bioprospecting challenges in unusual environments. Microbial Biotechnology, 2017, 10, 671-673.	4.2	11
35	From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures. Biotechnology for Biofuels, 2017, 10, 171.	6.2	43
36	Complete Genome Sequence of a New <i>Firmicutes</i> Species Isolated from Anaerobic Biomass Hydrolysis. Genome Announcements, 2017, 5, .	0.8	0

#	Article	IF	CITATIONS
37	The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp Frontiers in Microbiology, 2016, 7, 1005.	3.5	108
38	A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city. Scientific Reports, 2016, 6, 29235.	3.3	39
39	Are multi-omics enough?. Nature Microbiology, 2016, 1, 16101.	13.3	64
40	Synthetic Biology: From Having Fun to Jumping the Gun. NanoEthics, 2016, 10, 105-109.	0.8	3
41	The coffee-machine bacteriome: biodiversity and colonisation of the wasted coffee tray leach. Scientific Reports, 2015, 5, 17163.	3.3	34
42	Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling. Scientific Reports, 2015, 5, 18396.	3.3	17
43	Responsibility and intellectual property in synthetic biology. EMBO Reports, 2015, 16, 1055-1059.	4.5	12
44	Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnology for Biofuels, 2015, 8, 87.	6.2	90
45	Standards not that standard. Journal of Biological Engineering, 2015, 9, 17.	4.7	19
46	Confidence, tolerance, and allowance in biological engineering: The nuts and bolts of living things. BioEssays, 2015, 37, 95-102.	2.5	22
47	Selecting Microbial Strains from Pine Tree Resin: Biotechnological Applications from a Terpene World. PLoS ONE, 2014, 9, e100740.	2.5	21
48	Cartoons on bacterial balloons: scientists' opinion on the popularization of synthetic biology. Systems and Synthetic Biology, 2014, 8, 321-328.	1.0	5
49	Engineering Bacteria to Form a Biofilm and Induce Clumping in <i>Caenorhabditis elegans</i> Synthetic Biology, 2014, 3, 941-943.	3.8	2
50	Early transcription of Bacillus thuringiensis cry genes in strains active on Lepidopteran species and the role of gene content on their expression. Antonie Van Leeuwenhoek, 2014, 105, 1007-1015.	1.7	3
51	iGEM 2.0â€"refoundations for engineering biology. Nature Biotechnology, 2014, 32, 420-424.	17.5	61
52	Towards light-mediated sensing of bacterial comfort. Letters in Applied Microbiology, 2014, 59, 127-132.	2.2	1
53	What Is Synthetic Biology?. SpringerBriefs in Biochemistry and Molecular Biology, 2014, , 1-7.	0.3	2
54	Are We Doing Synthetic Biology?. SpringerBriefs in Biochemistry and Molecular Biology, 2014, , 63-68.	0.3	0

#	Article	IF	CITATIONS
55	Mealybugs nested endosymbiosis: going into the †matryoshka†system in Planococcus citri in depth. BMC Microbiology, 2013, 13, 74.	3.3	37
56	Designing de novo: interdisciplinary debates in synthetic biology. Systems and Synthetic Biology, 2013, 7, 41-50.	1.0	17
57	What Symbionts Teach us about Modularity. Frontiers in Bioengineering and Biotechnology, 2013, 1, 14.	4.1	11
58	Towards a Microbial Thermoelectric Cell. PLoS ONE, 2013, 8, e56358.	2.5	5
59	Are we doing synthetic biology?. Systems and Synthetic Biology, 2012, 6, 79-83.	1.0	14
60	Bacteria from acidic to strongly alkaline insect midguts: Potential sources of extreme cellulolytic enzymes. Biomass and Bioenergy, 2012, 45, 288-294.	5.7	26
61	A Bacillus thuringiensis strain producing epizootics on Plodia interpunctella: A case study. Journal of Stored Products Research, 2012, 48, 52-60.	2.6	12
62	Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis. PLoS ONE, 2011, 6, e21751.	2.5	71
63	The ten grand challenges of synthetic life. Systems and Synthetic Biology, 2011, 5, 1-9.	1.0	54
64	Aequorin-expressing yeast emits light under electric control. Journal of Biotechnology, 2011, 152, 93-95.	3.8	4
65	Complete Genome Sequence of "Candidatus Tremblaya princeps―Strain PCVAL, an Intriguing Translational Machine below the Living-Cell Status. Journal of Bacteriology, 2011, 193, 5587-5588.	2.2	73
66	Beyond directed evolution: Darwinian selection as a tool for synthetic biology. Systems and Synthetic Biology, 2010, 4, 1-6.	1.0	17
67	Paving the way for synthetic biologyâ€based bioremediation in Europe. Microbial Biotechnology, 2010, 3, 134-135.	4.2	1
68	Rice straw management: the big waste. Biofuels, Bioproducts and Biorefining, 2010, 4, 154-159.	3.7	64
69	Effects of <i>Bacillus thuringiensis </i> Cry1Ab and Cry3Aa endotoxins on predatory Coleoptera tested through artificial diet-incorporation bioassays. Bulletin of Entomological Research, 2010, 100, 297-302.	1.0	26
70	Effects of <i>Bacillus thuringiensis</i> δ-Endotoxins on the Pea Aphid (<i>Acyrthosiphon pisum</i>). Applied and Environmental Microbiology, 2009, 75, 4897-4900.	3.1	80
71	Yeast cultures with UCP1 uncoupling activity as a heating device. New Biotechnology, 2009, 26, 300-306.	4.4	7
72	Hymenopteran specificity of Bacillus thuringiensis strain PS86Q3. Biological Control, 2008, 45, 427-432.	3.0	17

#	Article	IF	CITATIONS
73	A simple DNA extraction method suitable for PCR detection of genetically modified maize. Journal of the Science of Food and Agriculture, 2007, 87, 2728-2731.	3.5	8
74	Molecular and Insecticidal Characterization of a Cry1I Protein Toxic to Insects of the Families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Applied and Environmental Microbiology, 2006, 72, 4796-4804.	3.1	44
7 5	Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis. Journal of Invertebrate Pathology, 2006, 93, 63-66.	3.2	7
76	Characterization of a Bacillus thuringiensis strain with a broad spectrum of activity against lepidopteran insects. Entomologia Experimentalis Et Applicata, 2004, 111, 71-77.	1.4	16
77	Cry29A and Cry30A: Two Novel δ-endotoxins Isolated from Bacillus thuringiensis serovar medellin. Systematic and Applied Microbiology, 2003, 26, 502-504.	2.8	11
78	PCR-based identification of Bacillus thuringiensispesticidal crystal genes. FEMS Microbiology Reviews, 2003, 26, 419-432.	8.6	106
79	Correlation between serovars of Bacillus thuringiensis and type I \hat{I}^2 -exotoxin production. Journal of Invertebrate Pathology, 2003, 82, 57-62.	3.2	18
80	PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiology Reviews, 2003, 26, 419-432.	8.6	5
81	Isolation and characterization of a strong promoter from Bacillus sphaericus strain 2297. Journal of Invertebrate Pathology, 2002, 81, 57-58.	3.2	2
82	Host range and gene contents of Bacillus thuringiensisstrains toxic towards Spodoptera exigua. Entomologia Experimentalis Et Applicata, 2000, 97, 339-346.	1.4	19
83	Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. Journal of Applied Microbiology, 2000, 89, 309-316.	3.1	44
84	Isolation and Characterization of Bacillus thuringiensis Strains from Aquatic Environments in Spain. Current Microbiology, 2000, 40, 402-408.	2.2	42
85	Characterization of Bacillus thuringiensis ser. balearica (Serotype H48) and ser. navarrensis (Serotype) Tj ETQq1 1	0.784314 2.2	· rgBT /Over
86	Characterization of Bacillus thuringiensisserovarbolivia (serotype H63), a novel serovar isolated from the Bolivian high valleys. Letters in Applied Microbiology, 1999, 28, 440-444.	2.2	11
87	Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype) Tj $ETQq1\ 1\ 0.78$	43.14 rgBT	lQverlock
88	Analysis of pteridines in Pyrrhocoris apterus (L.) (heteroptera, pyrrhocoridae) during development and in body-color mutants. Archives of Insect Biochemistry and Physiology, 1997, 34, 83-98.	1.5	15
89	Identification of pteridines in the firebug, Pyrrhocoris apterus (L.) (Heteroptera, Pyrrhocoridae) by high -performance liquid chromatography. Journal of Chromatography A, 1996, 724, 193-197.	3.7	16