Manuel Porcar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184102/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp Frontiers in Microbiology, 2016, 7, 1005.	3.5	108
2	PCR-based identification ofBacillus thuringiensispesticidal crystal genes. FEMS Microbiology Reviews, 2003, 26, 419-432.	8.6	106
3	Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnology for Biofuels, 2015, 8, 87.	6.2	90
4	Effects of <i>Bacillus thuringiensis</i> δ-Endotoxins on the Pea Aphid (<i>Acyrthosiphon pisum</i>). Applied and Environmental Microbiology, 2009, 75, 4897-4900.	3.1	80
5	Complete Genome Sequence of "Candidatus Tremblaya princeps―Strain PCVAL, an Intriguing Translational Machine below the Living-Cell Status. Journal of Bacteriology, 2011, 193, 5587-5588.	2.2	73
6	Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis. PLoS ONE, 2011, 6, e21751.	2.5	71
7	Rice straw management: the big waste. Biofuels, Bioproducts and Biorefining, 2010, 4, 154-159.	3.7	64
8	Are multi-omics enough?. Nature Microbiology, 2016, 1, 16101.	13.3	64
9	iGEM 2.0—refoundations for engineering biology. Nature Biotechnology, 2014, 32, 420-424.	17.5	61
10	The ten grand challenges of synthetic life. Systems and Synthetic Biology, 2011, 5, 1-9.	1.0	54
11	The long journey towards standards for engineering biosystems. EMBO Reports, 2020, 21, e50521.	4.5	46
12	Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic. Journal of Applied Microbiology, 2000, 89, 309-316.	3.1	44
13	Molecular and Insecticidal Characterization of a Cry1l Protein Toxic to Insects of the Families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Applied and Environmental Microbiology, 2006, 72, 4796-4804.	3.1	44
14	From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures. Biotechnology for Biofuels, 2017, 10, 171.	6.2	43
15	Isolation and Characterization of Bacillus thuringiensis Strains from Aquatic Environments in Spain. Current Microbiology, 2000, 40, 402-408.	2.2	42
16	A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city. Scientific Reports, 2016, 6, 29235.	3.3	39
17	Mealybugs nested endosymbiosis: going into the â€~matryoshka' system in Planococcus citri in depth. BMC Microbiology, 2013, 13, 74.	3.3	37
18	The coffee-machine bacteriome: biodiversity and colonisation of the wasted coffee tray leach. Scientific Reports, 2015, 5, 17163.	3.3	34

#	Article	IF	CITATIONS
19	High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Frontiers in Microbiology, 2020, 11, 583120.	3.5	34
20	Effects of <i>Bacillus thuringiensis</i> Cry1Ab and Cry3Aa endotoxins on predatory Coleoptera tested through artificial diet-incorporation bioassays. Bulletin of Entomological Research, 2010, 100, 297-302.	1.0	26
21	Bacteria from acidic to strongly alkaline insect midguts: Potential sources of extreme cellulolytic enzymes. Biomass and Bioenergy, 2012, 45, 288-294.	5.7	26
22	Polar solar panels: <scp>A</scp> rctic and <scp>A</scp> ntarctic microbiomes display similar taxonomic profiles. Environmental Microbiology Reports, 2018, 10, 75-79.	2.4	25
23	Methanogenic community shifts during the transition from sewage mono-digestion to co-digestion of grass biomass. Bioresource Technology, 2018, 265, 275-281.	9.6	25
24	Microbial Ecology on Solar Panels in Berkeley, CA, United States. Frontiers in Microbiology, 2018, 9, 3043.	3.5	23
25	Confidence, tolerance, and allowance in biological engineering: The nuts and bolts of living things. BioEssays, 2015, 37, 95-102.	2.5	22
26	Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype) Tj ETQq0 0 0	rgBTJOver	lock 10 Tf 50
27	Selecting Microbial Strains from Pine Tree Resin: Biotechnological Applications from a Terpene World. PLoS ONE, 2014, 9, e100740.	2.5	21
28	Microbial communities involved in biogas production exhibit high resilience to heat shocks. Bioresource Technology, 2018, 249, 1074-1079.	9.6	21
29	Proteomic and metagenomic insights into prehistoric Spanish Levantine Rock Art. Scientific Reports, 2018, 8, 10011.	3.3	20
30	Host range and gene contents ofBacillus thuringiensisstrains toxic towardsSpodoptera exigua. Entomologia Experimentalis Et Applicata, 2000, 97, 339-346.	1.4	19
31	Standards not that standard. Journal of Biological Engineering, 2015, 9, 17.	4.7	19
32	Correlation between serovars of Bacillus thuringiensis and type I Î ² -exotoxin production. Journal of Invertebrate Pathology, 2003, 82, 57-62.	3.2	18
33	Hymenopteran specificity of Bacillus thuringiensis strain PS86Q3. Biological Control, 2008, 45, 427-432.	3.0	17
34	Beyond directed evolution: Darwinian selection as a tool for synthetic biology. Systems and Synthetic Biology, 2010, 4, 1-6.	1.0	17
35	Designing de novo: interdisciplinary debates in synthetic biology. Systems and Synthetic Biology, 2013, 7, 41-50.	1.0	17
36	Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling. Scientific Reports, 2015, 5, 18396.	3.3	17

3

#	Article	IF	CITATIONS
37	Identification of pteridines in the firebug, Pyrrhocoris apterus (L.) (Heteroptera, Pyrrhocoridae) by high -performance liquid chromatography. Journal of Chromatography A, 1996, 724, 193-197.	3.7	16

Characterization of Bacillus thuringiensis ser. balearica (Serotype H48) and ser. navarrensis (Serotype) Tj ETQq0 0 0 rgBT /Overlock 10 T

39	Characterization of a Bacillus thuringiensis strain with a broad spectrum of activity against lepidopteran insects. Entomologia Experimentalis Et Applicata, 2004, 111, 71-77.	1.4	16
40	Analysis of pteridines inPyrrhocoris apterus (L.) (heteroptera, pyrrhocoridae) during development and in body-color mutants. Archives of Insect Biochemistry and Physiology, 1997, 34, 83-98.	1.5	15
41	Kineococcus vitellinus sp. nov., Kineococcus indalonis sp. nov. and Kineococcus siccus sp. nov., Isolated Nearby the Tabernas Desert (AlmerÃa, Spain). Microorganisms, 2020, 8, 1547.	3.6	15
42	Are we doing synthetic biology?. Systems and Synthetic Biology, 2012, 6, 79-83.	1.0	14
43	Extremophilic microbial communities on photovoltaic panel surfaces: a twoâ€year study. Microbial Biotechnology, 2020, 13, 1819-1830.	4.2	13
44	Living in a bottle: Bacteria from sedimentâ€associated Mediterranean waste and potential growth on polyethylene terephthalate. MicrobiologyOpen, 2022, 11, e1259.	3.0	13
45	A Bacillus thuringiensis strain producing epizootics on Plodia interpunctella: A case study. Journal of Stored Products Research, 2012, 48, 52-60.	2.6	12
46	Responsibility and intellectual property in synthetic biology. EMBO Reports, 2015, 16, 1055-1059.	4.5	12
47	Ammonia removal during leach-bed acidification leads to optimized organic acid production from chicken manure. Renewable Energy, 2020, 146, 1021-1030.	8.9	12
48	Artâ€omics: multiâ€omics meet archaeology and art conservation. Microbial Biotechnology, 2020, 13, 435-441.	4.2	12
49	Chemically Stressed Bacterial Communities in Anaerobic Digesters Exhibit Resilience and Ecological Flexibility. Frontiers in Microbiology, 2020, 11, 867.	3.5	12
50	Characterization ofBacillus thuringiensisserovarbolivia(serotype H63), a novel serovar isolated from the Bolivian high valleys. Letters in Applied Microbiology, 1999, 28, 440-444.	2.2	11
51	Cry29A and Cry30A: Two Novel δ-endotoxins Isolated from Bacillus thuringiensis serovar medellin. Systematic and Applied Microbiology, 2003, 26, 502-504.	2.8	11
52	What Symbionts Teach us about Modularity. Frontiers in Bioengineering and Biotechnology, 2013, 1, 14.	4.1	11
53	Bioprospecting challenges in unusual environments. Microbial Biotechnology, 2017, 10, 671-673.	4.2	11
54	The wasted chewing gum bacteriome. Scientific Reports, 2020, 10, 16846.	3.3	10

#	Article	IF	CITATIONS
55	A lab in the field: applications of real-time, in situ metagenomic sequencing. Biology Methods and Protocols, 2020, 5, bpaa016.	2.2	10
56	A Round Trip to the Desert: In situ Nanopore Sequencing Informs Targeted Bioprospecting. Frontiers in Microbiology, 2021, 12, 768240.	3.5	10
57	Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Systematic and Applied Microbiology, 2020, 43, 126024.	2.8	9
58	A simple DNA extraction method suitable for PCR detection of genetically modified maize. Journal of the Science of Food and Agriculture, 2007, 87, 2728-2731.	3.5	8
59	Xerotolerance: A New Property in Exiguobacterium Genus. Microorganisms, 2021, 9, 2455.	3.6	8
60	Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis. Journal of Invertebrate Pathology, 2006, 93, 63-66.	3.2	7
61	Yeast cultures with UCP1 uncoupling activity as a heating device. New Biotechnology, 2009, 26, 300-306.	4.4	7
62	Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis. Genome Announcements, 2018, 6, .	0.8	7
63	Belnapia mucosa sp. nov. and Belnapia arida sp. nov., isolated from desert biocrust. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	7
64	Bioprospecting the Solar Panel Microbiome: High-Throughput Screening for Antioxidant Bacteria in a Caenorhabditis elegans Model. Frontiers in Microbiology, 2019, 10, 986.	3.5	6
65	The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. Npj Biofilms and Microbiomes, 2022, 8, 32.	6.4	6
66	Cartoons on bacterial balloons: scientists' opinion on the popularization of synthetic biology. Systems and Synthetic Biology, 2014, 8, 321-328.	1.0	5
67	PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiology Reviews, 2003, 26, 419-432.	8.6	5
68	Towards a Microbial Thermoelectric Cell. PLoS ONE, 2013, 8, e56358.	2.5	5
69	Aequorin-expressing yeast emits light under electric control. Journal of Biotechnology, 2011, 152, 93-95.	3.8	4
70	Creating life and the media: translations and echoes. Life Sciences, Society and Policy, 2018, 14, 19.	3.2	4
71	Microbial communities of the Mediterranean rocky shore: ecology and biotechnological potential of the seaâ€land transition. Microbial Biotechnology, 2019, 12, 1359-1370.	4.2	4
72	The microbial <i>terroir</i> : open questions on the Nagoya protocol applied to microbial resources. Microbial Biotechnology, 2021, 14, 1878-1880.	4.2	4

#	Article	IF	CITATIONS
73	Sagittula salina sp. nov., isolated from marine waste. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	4
74	Early transcription of Bacillus thuringiensis cry genes in strains active on Lepidopteran species and the role of gene content on their expression. Antonie Van Leeuwenhoek, 2014, 105, 1007-1015.	1.7	3
75	Synthetic Biology: From Having Fun to Jumping the Gun. NanoEthics, 2016, 10, 105-109.	0.8	3
76	Thermoelectric heat exchange and growth regulation in a continuous yeast culture. MicrobiologyOpen, 2019, 8, e00648.	3.0	3
77	The Hidden Charm of Life. Life, 2019, 9, 5.	2.4	3
78	Words, images and gender. EMBO Reports, 2019, 20, e48401.	4.5	3
79	Isolation and characterization of a strong promoter from Bacillus sphaericus strain 2297. Journal of Invertebrate Pathology, 2002, 81, 57-58.	3.2	2
80	Engineering Bacteria to Form a Biofilm and Induce Clumping in <i>Caenorhabditis elegans</i> . ACS Synthetic Biology, 2014, 3, 941-943.	3.8	2
81	Synthetic microbiology as a source of new enterprises and job creation: a Mediterranean perspective. Microbial Biotechnology, 2019, 12, 8-10.	4.2	2
82	The rose and the name: the unresolved debate on biotechnological terms. Microbial Biotechnology, 2020, 13, 305-310.	4.2	2
83	What Is Synthetic Biology?. SpringerBriefs in Biochemistry and Molecular Biology, 2014, , 1-7.	0.3	2
84	Paving the way for synthetic biologyâ€based bioremediation in Europe. Microbial Biotechnology, 2010, 3, 134-135.	4.2	1
85	Towards light-mediated sensing of bacterial comfort. Letters in Applied Microbiology, 2014, 59, 127-132.	2.2	1
86	Complete Genome Sequence of a New Clostridium sp. Isolated from Anaerobic Digestion and Biomethanation. Microbiology Resource Announcements, 2020, 9, .	0.6	0
87	Biological Standards and Biosecurity: The Unexplored Link. NATO Science for Peace and Security Series C: Environmental Security, 2021, , 59-66.	0.2	0
88	Are We Doing Synthetic Biology?. SpringerBriefs in Biochemistry and Molecular Biology, 2014, , 63-68.	0.3	0
89	Complete Genome Sequence of a New <i>Firmicutes</i> Species Isolated from Anaerobic Biomass Hydrolysis. Genome Announcements, 2017, 5, .	0.8	0