Theodore Garland Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6183823/publications.pdf

Version: 2024-02-01

290 papers

25,335 citations

73 h-index 9605

293 all docs 293 docs citations

times ranked

293

20863 citing authors

g-index

#	Article	IF	CITATIONS
1	The Inverse Krogh Principle: All Organisms Are Worthy of Study. Physiological and Biochemical Zoology, 2023, 96, 1-16.	0.6	6
2	Effects of selective breeding for voluntary exercise, chronic exercise, and their interaction on muscle attachment site morphology in house mice. Journal of Anatomy, 2022, 240, 279-295.	0.9	13
3	Trade-Offs (and Constraints) in Organismal Biology. Physiological and Biochemical Zoology, 2022, 95, 82-112.	0.6	60
4	Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiology and Behavior, 2022, 245, 113675.	1.0	3
5	Scaling and relations of morphology with locomotor kinematics in the sidewinder rattlesnake <i>Crotalus cerastes</i> . Journal of Experimental Biology, 2022, 225, .	0.8	5
6	Oral antibiotics reduce voluntary exercise behavior in athletic mice. Behavioural Processes, 2022, 199, 104650.	0.5	4
7	Rapid and longerâ€term effects of selective breeding for voluntary exercise behavior on skeletal morphology in house mice. Journal of Anatomy, 2021, 238, 720-742.	0.9	9
8	Conditioned place preference for cocaine and methylphenidate in female mice from lines selectively bred for high voluntary <scp>wheelâ€running</scp> behavior. Genes, Brain and Behavior, 2021, 20, e12700.	1.1	4
9	Morphological evolution in relationship to sidewinding, arboreality and precipitation in snakes of the family Viperidae. Biological Journal of the Linnean Society, 2021, 132, 328-345.	0.7	6
10	Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. Journal of Experimental Biology, 2021, 224, .	0.8	33
11	Effects of early-life exposure to Western diet and voluntary exercise on adult activity levels, exercise physiology, and associated traits in selectively bred High Runner mice. Physiology and Behavior, 2021, 234, 113389.	1.0	16
12	Roles of KLF4 and AMPK in the inhibition of glycolysis by pulsatile shear stress in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
13	Cross-fostering selectively bred High Runner mice affects adult body mass but not voluntary exercise. Physiology and Behavior, 2021, 241, 113569.	1.0	4
14	Evolutionary physiology at 30+: Has the promise been fulfilled?. BioEssays, 2021, 44, 2100167.	1.2	5
15	Long-Term Effects of Fatherhood on Morphology, Energetics, and Exercise Performance in California Mice (<i>Peromyscus californicus</i>). Physiological and Biochemical Zoology, 2020, 93, 75-86.	0.6	4
16	Genetic Basis of Aerobically Supported Voluntary Exercise: Results from a Selection Experiment with House Mice. Genetics, 2020, 216, 781-804.	1.2	15
17	Phylogenetic analysis of maximal oxygen consumption during exercise (V̇O2max) and ecological correlates among lizard species. Journal of Experimental Biology, 2020, , .	0.8	5
18	Translating Preclinical Research for Exercise Oncology: Take It to the VO2max. Frontiers in Oncology, 2020, 10, 575657.	1.3	4

#	Article	IF	CITATIONS
19	Universal metabolic constraints shape the evolutionary ecology of diving in animals. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200488.	1.2	18
20	Living on the edge: Glucocorticoid physiology in desert iguanas (Dipsosaurus dorsalis) is predicted by distance from an anthropogenic disturbance, body condition, and population density. General and Comparative Endocrinology, 2020, 294, 113468.	0.8	4
21	Coadaptation of the chemosensory system with voluntary exercise behavior in mice. PLoS ONE, 2020, 15, e0241758.	1.1	8
22	Ecophysiology of mammals. Journal of Mammalogy, 2019, 100, 894-909.	0.6	3
23	Effects of short- and long-term cold acclimation on morphology, physiology, and exercise performance of California mice (Peromyscus californicus): potential modulation by fatherhood. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2019, 189, 471-487.	0.7	6
24	Revisiting a Key Innovation in Evolutionary Biology: Felsenstein's "Phylogenies and the Comparative Method― American Naturalist, 2019, 193, 755-772.	1.0	44
25	DNA methylation in AgRP neurons regulates voluntary exercise behavior in mice. Nature Communications, 2019, 10, 5364.	5.8	26
26	Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype. Physiology and Behavior, 2019, 199, 322-332.	1.0	7
27	Exerciseâ€induced loading increases ilium cortical area in a selectively bred mouse model. American Journal of Physical Anthropology, 2019, 168, 543-551.	2.1	8
28	I Smell a Mouse: Indirect Genetic Effects on Voluntary Wheel-Running Distance, Duration and Speed. Behavior Genetics, 2019, 49, 49-59.	1.4	10
29	Influence of corticosterone on growth, home-cage activity, wheel running, and aerobic capacity in house mice selectively bred for high voluntary wheel-running behavior. Physiology and Behavior, 2019, 198, 27-41.	1.0	22
30	Mitochondrial haplotypes are not associated with mice selectively bred for high voluntary wheel running. Mitochondrion, 2019, 46, 134-139.	1.6	4
31	Creation of a Novel Inbred Mouse Model for High Activity with a Small Muscle Phenotype. FASEB Journal, 2019, 33, .	0.2	O
32	An Introduction to Evolutionary Physiology, with an Example of Experimental Evolution. FASEB Journal, 2019, 33, 204.1.	0.2	0
33	Effects of a physical and energetic challenge on male California mice (<i>Peromyscus) Tj ETQq1 1 0.784314 rgBT</i>	/Qverlock	19 Tf 50 183
34	Evolution of hindlimb bone dimensions and muscle masses in house mice selectively bred for high voluntary wheelâ€running behavior. Journal of Morphology, 2018, 279, 766-779.	0.6	13
35	Among-Individual Variation in Desert Iguanas (Squamata: <i>Dipsosaurus dorsalis</i>): Endurance Capacity Is Positively Related to Home Range Size. Physiological and Biochemical Zoology, 2018, 91, 725-730.	0.6	8
36	Predicting the bending properties of long bones: Insights from an experimental mouse model. American Journal of Physical Anthropology, 2018, 165, 457-470.	2.1	6

#	Article	IF	CITATIONS
37	Biological/Genetic Regulation of Physical Activity Level. Medicine and Science in Sports and Exercise, 2018, 50, 863-873.	0.2	80
38	High-runner mice have reduced incentive salience for a sweet-taste reward when housed with wheel access. Behavioural Processes, 2018, 146, 46-53.	0.5	7
39	Reduced non-bicarbonate skeletal muscle buffering capacity in mice with the mini-muscle phenotype. Journal of Experimental Biology, 2018, 221, .	0.8	1
40	Metabolic Scope as a Proximate Constraint on Individual Behavioral Variation: Effects on Personality, Plasticity, and Predictability. American Naturalist, 2018, 192, 142-154.	1.0	47
41	Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise. Physiology and Behavior, 2018, 194, 1-8.	1.0	20
42	Brain region-dependent gene networks associated with selective breeding for increased voluntary wheel-running behavior. PLoS ONE, 2018, 13, e0201773.	1.1	13
43	Effects of selective breeding for high voluntary wheelâ€running behavior on femoral nutrient canal size and abundance in house mice. Journal of Anatomy, 2018, 233, 193-203.	0.9	11
44	Reply to Ruff, Warden, and Karlson. American Journal of Physical Anthropology, 2018, 167, 190-193.	2.1	1
45	Selective Breeding and Exercise Affect Midbrain and PAG Volume. FASEB Journal, 2018, 32, 599.1.	0.2	0
46	The Effect of Selective Breeding for High Voluntary Wheelâ€Running Behavior on Femoral Nutrient Canal Abundance and Size. FASEB Journal, 2018, 32, 855.18.	0.2	0
47	Age-Related Changes in Locomotor Performance Reveal a Similar Pattern for <i>Caenorhabditis elegans</i> , <i>Mus domesticus</i> , <i>Canis familiaris</i> , <i>Equus caballus</i> , and <i>Homo sapiens</i> , Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw136.	1.7	26
48	Effects of activity, genetic selection, and their interaction on muscle metabolic capacities and organ masses in mice. Journal of Experimental Biology, 2017, 220, 1038-1047.	0.8	23
49	Editorial on PBZ's Ninetieth Year and Top 90 Papers in PBZ, 1927–2017. Physiological and Biochemical Zoology, 2017, 90, 125-138.	0.6	1
50	Metabolic and affective consequences of fatherhood in male California mice. Physiology and Behavior, 2017, 177, 57-67.	1.0	11
51	Early-Life Effects on Adult Physical Activity: Concepts, Relevance, and Experimental Approaches. Physiological and Biochemical Zoology, 2017, 90, 1-14.	0.6	23
52	Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice. Physiology and Behavior, 2017, 179, 235-245.	1.0	31
53	Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice. Physiological and Biochemical Zoology, 2017, 90, 533-545.	0.6	13
54	Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes. Physiology and Behavior, 2017, 170, 141-150.	1.0	41

#	Article	IF	Citations
55	Preference for Western diet coadapts in High Runner mice and affects voluntary exercise and spontaneous physical activity in a genotype-dependent manner. Behavioural Processes, 2017, 135, 56-65.	0.5	13
56	Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity. Physiology and Behavior, 2017, 170, 133-140.	1.0	24
57	Complex Reproductive Traits and Whole-Organism Performance. Integrative and Comparative Biology, 2017, 57, 407-422.	0.9	19
58	Ecological and phylogenetic variability in the spinalis muscle of snakes. Journal of Evolutionary Biology, 2017, 30, 2031-2043.	0.8	13
59	Contribution of citizen science to improve knowledge on marine biodiversity in the Gulf Region. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 24, 126-135.	1.0	3
60	A Mixed Model Approach to Genome-Wide Association Studies for Selection Signatures, with Application to Mice Bred for Voluntary Exercise Behavior. Genetics, 2017, 207, 785-799.	1,2	15
61	Locomotion, Energetics, Performance, and Behavior: A Mammalian Perspective on Lizards, and Vice Versa. Integrative and Comparative Biology, 2017, 57, 252-266.	0.9	32
62	High motivation for exercise is associated with altered chromatin regulators of monoamine receptor gene expression in the striatum of selectively bred mice. Genes, Brain and Behavior, 2017, 16, 328-341.	1.1	33
63	Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors. PLoS ONE, 2016, 11, e0167095.	1.1	22
64	Limb segment contributions to the evolution of hind limb length in phrynosomatid lizards. Biological Journal of the Linnean Society, 2016, 117, 775-795.	0.7	8
65	Mobility as an emergent property of biological organization: Insights from experimental evolution. Evolutionary Anthropology, 2016, 25, 98-104.	1.7	34
66	Consequences of Fatherhood in the Biparental California Mouse (Peromyscus californicus): Locomotor Performance, Metabolic Rate, and Organ Masses. Physiological and Biochemical Zoology, 2016, 89, 130-140.	0.6	11
67	Nature or Nurture? Heritability in the Classroom. Physiological and Biochemical Zoology, 2016, 89, 457-461.	0.6	0
68	Acute Restraint Stress Alters Wheel-Running Behavior Immediately Following Stress and up to 20 Hours Later in House Mice. Physiological and Biochemical Zoology, 2016, 89, 546-552.	0.6	15
69	Serotonin-mediated central fatigue underlies increased endurance capacity in mice from lines selectively bred for high voluntary wheel running. Physiology and Behavior, 2016, 161, 145-154.	1.0	22
70	Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior. Integrative and Comparative Biology, 2016, 56, 207-224.	0.9	59
71	<i>R2d2</i> Drives Selfish Sweeps in the House Mouse. Molecular Biology and Evolution, 2016, 33, 1381-1395.	3.5	55
72	Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet. Physiology and Behavior, 2016, 157, 246-257.	1.0	6

#	Article	IF	CITATIONS
73	Comparison of Morphology and Bending Mechanics of Femora in Response to Chronic Exercise in Three Strains of Mice. FASEB Journal, 2016, 30, 368.2.	0.2	0
74	The Age-Performance Relationship. Medicine and Science in Sports and Exercise, 2016, 48, 784.	0.2	0
75	Vivid birds do not initiate flight sooner despite their potential conspicuousness. Environmental Epigenetics, 2015, 61, 773-780.	0.9	16
76	Speed and Endurance Do Not Trade Off in Phrynosomatid Lizards. Physiological and Biochemical Zoology, 2015, 88, 634-647.	0.6	22
77	Evolution of the additive genetic variance–covariance matrix under continuous directional selection on a complex behavioural phenotype. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151119.	1.2	49
78	A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2. PLoS Genetics, 2015, 11, e1004850.	1.5	76
79	Genetic approaches in comparative and evolutionary physiology. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R197-R214.	0.9	42
80	Effects of voluntary exercise on spontaneous physical activity and food consumption in mice: Results from an artificial selection experiment. Physiology and Behavior, 2015, 149, 86-94.	1.0	57
81	Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice. Physiology and Behavior, 2015, 149, 279-286.	1.0	27
82	Energetics and behavior: many paths to understanding. Trends in Ecology and Evolution, 2015, 30, 365-366.	4.2	21
83	Relationship between Maximal Oxygen Consumption () and Home Range Area in Mammals. Physiological and Biochemical Zoology, 2015, 88, 660-667.	0.6	19
84	Shapeâ€shift: Semicircular canal morphology responds to selective breeding for increased locomotor activity. Evolution; International Journal of Organic Evolution, 2014, 68, 3184-3198.	1.1	26
85	Quantitative genomics of voluntary exercise in mice: transcriptional analysis and mapping of expression QTL in muscle. Physiological Genomics, 2014, 46, 593-601.	1.0	34
86	Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running. Experimental Physiology, 2014, 99, 403-413.	0.9	12
87	Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running. Mechanisms of Development, 2014, 134, 16-30.	1.7	24
88	Island tameness: living on islands reduces flight initiation distance. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133019.	1.2	95
89	Effects of earlyâ€life exposure to Western diet and wheel access on metabolic syndrome profiles in mice bred for high voluntary exercise. Genes, Brain and Behavior, 2014, 13, 322-332.	1.1	20
90	THE EVOLUTION OF THE SEXUALLY SELECTED SWORD INXIPHOPHORUSDOES NOT COMPROMISE AEROBIC LOCOMOTOR PERFORMANCE. Evolution; International Journal of Organic Evolution, 2014, 68, 1806-1823.	1.1	13

#	Article	IF	Citations
91	Trade-offs. Current Biology, 2014, 24, R60-R61.	1.8	153
92	Swimming with a sword: tail beat kinematics in relation to sword length in <i><scp>X</scp>iphophorus</i> . Functional Ecology, 2014, 28, 924-932.	1.7	13
93	Phylogenetic Regression for Binary Dependent Variables. , 2014, , 231-261.		75
94	Editorial. Physiological and Biochemical Zoology, 2014, 87, 585-586.	0.6	1
95	Mice from lines selectively bred for high voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access. Physiology and Behavior, 2013, 112-113, 49-55.	1.0	26
96	Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. Journal of Experimental Biology, 2013, 216, 515-523.	0.8	51
97	Phylogenetic analysis of mammalian maximal oxygen consumption during exercise. Journal of Experimental Biology, 2013, 216, 4712-21.	0.8	60
98	Evolutionary Patterns in Trace Metal (Cd and Zn) Efflux Capacity in Aquatic Organisms. Environmental Science & Environmental S	4.6	31
99	Gene expression profiling of gastrocnemius of "minimuscle―mice. Physiological Genomics, 2013, 45, 228-236.	1.0	11
100	High-saturated fat-sucrose feeding affects lactation energetics in control mice and mice selectively bred for high wheel-running behavior. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1433-R1440.	0.9	4
101	Immune response to a <i>Trichinella spiralis </i> infection in house mice from lines selectively bred for high voluntary wheel running. Journal of Experimental Biology, 2013, 216, 4212-21.	0.8	14
102	A Novel Intronic Single Nucleotide Polymorphism in the <i>Myosin heavy polypeptide 4</i> Gene Is Responsible for the Mini-Muscle Phenotype Characterized by Major Reduction in Hind-Limb Muscle Mass in Mice. Genetics, 2013, 195, 1385-1395.	1.2	36
103	LIMITS TO BEHAVIORAL EVOLUTION: THE QUANTITATIVE GENETICS OF A COMPLEX TRAIT UNDER DIRECTIONAL SELECTION. Evolution; International Journal of Organic Evolution, 2013, 67, 3102-3119.	1.1	76
104	Within-lifetime trade-offs but evolutionary freedom for hormonal and immunological traits: evidence from mice bred for high voluntary exercise. Journal of Experimental Biology, 2012, 215, 1651-1661.	0.8	12
105	Do mice bred selectively for high locomotor activity have a greater reliance on lipids to power submaximal aerobic exercise?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R101-R111.	0.9	18
106	Performance, Personality, and Energetics: Correlation, Causation, and Mechanism. Physiological and Biochemical Zoology, 2012, 85, 543-571.	0.6	360
107	As the Sword Grows: Individual Variation and Ontogenetic Effects of a Sexually Selected Trait on Locomotor Performance in <i> Xiphophorus hellerii < i > Physiological and Biochemical Zoology, 2012, 85, 684-693.</i>	0.6	9
108	Functional Genomic Architecture of Predisposition to Voluntary Exercise in Mice: Expression QTL in the Brain. Genetics, 2012, 191, 643-654.	1.2	31

#	Article	IF	Citations
109	Are Voluntary Wheel Running and Open-Field Behavior Correlated in Mice? Different Answers from Comparative and Artificial Selection Approaches. Behavior Genetics, 2012, 42, 830-844.	1.4	41
110	Male Superiority in Spatial Navigation: Adaptation or Side Effect?. Quarterly Review of Biology, 2012, 87, 289-313.	0.0	49
111	Paternal responsiveness is associated with, but not mediated by reduced neophobia in male California mice (Peromyscus californicus). Physiology and Behavior, 2012, 107, 65-75.	1.0	33
112	The comparative biology of diving in two genera of European Dytiscidae (Coleoptera). Journal of Evolutionary Biology, 2012, 25, 329-341.	0.8	12
113	DEVELOPMENTAL TRAIT EVOLUTION IN TRILOBITES. Evolution; International Journal of Organic Evolution, 2012, 66, 314-329.	1.1	42
114	Sex differences in cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-running behavior. Pharmacology Biochemistry and Behavior, 2012, 101, 528-537.	1.3	50
115	Effects of leptin treatment and Western diet on wheel running in selectively bred high runner mice. Physiology and Behavior, 2012, 106, 252-258.	1.0	24
116	Genetic variations and physical activity as determinants of limb bone morphology: An experimental approach using a mouse model. American Journal of Physical Anthropology, 2012, 148, 24-35.	2.1	72
117	Genetics shift the angioâ€edaptive balance in skeletal muscle of mice selected for high running capacity. FASEB Journal, 2012, 26, 1142.26.	0.2	0
118	Changes in semicircular canal morphology in response to selective breeding for high voluntary wheel running. FASEB Journal, 2012, 26, 729.1.	0.2	0
119	Selective breeding of mice for high voluntary exercise alters adaptive plasticity of metabolic phenotypes in skeletal muscle. FASEB Journal, 2012, 26, 886.1.	0.2	0
120	The quantitative genetics of a complex trait under continuous directional selection. FASEB Journal, 2012, 26, .	0.2	0
121	Reply to "Heart Position in Snakes― Physiological and Biochemical Zoology, 2011, 84, 102-106.	0.6	4
122	The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. Journal of Experimental Biology, 2011, 214, 206-229.	0.8	365
123	Swimming performance trade-offs across a gradient in community composition in Trinidadian killifish (Rivulus hartii). Ecology, 2011, 92, 170-179.	1.5	53
124	Why do placentas evolve? An evaluation of the life-history facilitation hypothesis in the fish genus Poeciliopsis. Functional Ecology, 2011, 25, 757-768.	1.7	24
125	LATITUDINAL AND CLIMATIC VARIATION IN BODY SIZE AND DORSAL SCALE COUNTS IN SCELOPORUS LIZARDS:A PHYLOGENETIC PERSPECTIVE. Evolution; International Journal of Organic Evolution, 2011, 65, 3590-3607.	1.1	68
126	Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice. Experimental Physiology, 2011, 96, 1138-1150.	0.9	19

#	Article	IF	CITATIONS
127	Sex-Specific Heterosis in Line Crosses of Mice Selectively Bred for High Locomotor Activity. Behavior Genetics, 2011, 41, 615-624.	1.4	13
128	Identification of quantitative trait loci influencing skeletal architecture in mice: Emergence of $\langle i \rangle$ Cdh11 $\langle i \rangle$ as a primary candidate gene regulating femoral morphology. Journal of Bone and Mineral Research, 2011, 26, 2174-2183.	3.1	26
129	How to run far: multiple solutions and sex-specific responses to selective breeding for high voluntary activity levels. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 574-581.	1.2	87
130	Can Rodent Longevity Studies be Both Short and Powerful?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 279-286.	1.7	2
131	Exercise, weight loss, and changes in body composition in mice: phenotypic relationships and genetic architecture. Physiological Genomics, 2011, 43, 199-212.	1.0	41
132	Drift and Genome Complexity Revisited. PLoS Genetics, 2011, 7, e1002092.	1.5	35
133	Is Aquatic Life Correlated with an Increased Hematocrit in Snakes?. PLoS ONE, 2011, 6, e17077.	1.1	13
134	Voluntary exercise, spontaneous physical activity, and food consumption in High Runner lines of mice. FASEB Journal, 2011, 25, 1057.20.	0.2	0
135	Genetic architecture of voluntary exercise in an advanced intercross line of mice. Physiological Genomics, 2010, 42, 190-200.	1.0	55
136	Behavioral Traits are Affected by Selective Breeding for Increased Wheel-Running Behavior in Mice. Behavior Genetics, 2010, 40, 542-550.	1.4	30
137	Functional significance of genetic variation underlying limb bone diaphyseal structure. American Journal of Physical Anthropology, 2010, 143, 21-30.	2.1	46
138	Western diet increases wheel running in mice selectively bred for high voluntary wheel running. International Journal of Obesity, 2010, 34, 960-969.	1.6	56
139	Morphological evolution in Tropidurinae squamates: an integrated view along a continuum of ecological settings. Journal of Evolutionary Biology, 2010, 23, 98-111.	0.8	44
140	QTL Underlying Voluntary Exercise in Mice: Interactions with the "Mini Muscle" Locus and Sex. Journal of Heredity, 2010, 101, 42-53.	1.0	54
141	Erythropoietin elevates but not voluntary wheel running in mice. Journal of Experimental Biology, 2010, 213, 510-519.	0.8	56
142	Phylogenetic Logistic Regression for Binary Dependent Variables. Systematic Biology, 2010, 59, 9-26.	2.7	412
143	Exercising for Life? Energy Metabolism, Body Composition, and Longevity in Mice Exercising at Different Intensities. Physiological and Biochemical Zoology, 2010, 83, 239-251.	0.6	25
144	Did Genetic Drift Drive Increases in Genome Complexity?. PLoS Genetics, 2010, 6, e1001080.	1.5	107

#	Article	IF	CITATIONS
145	Parent-of-origin effects on voluntary exercise levels and body composition in mice. Physiological Genomics, 2010, 40, 111-120.	1.0	19
146	Phylogeny, Ecology, and Heart Position in Snakes. Physiological and Biochemical Zoology, 2010, 83, 43-54.	0.6	58
147	Locomotion in Response to Shifting Climate Zones: Not So Fast. Annual Review of Physiology, 2010, 72, 167-190.	5.6	46
148	Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity. Behavioural Brain Research, 2010, 210, 155-163.	1.2	91
149	Effects of selective breeding for increased wheel-running behavior on circadian timing of substrate oxidation and ingestive behavior. Physiology and Behavior, 2010, 99, 549-554.	1.0	4
150	Western diet increases wheel running in mice selectively bred for high voluntary wheel running. FASEB Journal, 2010, 24, 805.2.	0.2	0
151	Effects of western diet and wheel access on lipid profiles in mice selectively bred for high voluntary wheel running. FASEB Journal, 2010, 24, 1055.6.	0.2	0
152	Changes in efficiency and myosin expression in the small-muscle phenotype of mice selectively bred for high voluntary running activity. Journal of Experimental Biology, 2009, 212, 977-985.	0.8	14
153	Anatomic capillarization is elevated in the medial gastrocnemius muscle of mighty mini mice. Journal of Applied Physiology, 2009, 106, 1660-1667.	1.2	25
154	Running Behavior and Its Energy Cost in Mice Selectively Bred for High Voluntary Locomotor Activity. Physiological and Biochemical Zoology, 2009, 82, 662-679.	0.6	72
155	Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running. Journal of Experimental Biology, 2009, 212, 238-248.	0.8	49
156	Endurance capacity of mice selectively bred for high voluntary wheel running. Journal of Experimental Biology, 2009, 212, 2908-2917.	0.8	87
157	Locomotor trade-offs in mice selectively bred for high voluntary wheel running. Journal of Experimental Biology, 2009, 212, 2612-2618.	0.8	39
158	Reduction of type IIb myosin and IIB fibers in tibialis anterior muscle of miniâ€muscle mice from highâ€activity lines. Journal of Experimental Zoology, 2009, 311A, 189-198.	1.2	18
159	Day-to-day variability in voluntary wheel running among genetically differentiated lines of mice that vary in activity level. European Journal of Applied Physiology, 2009, 106, 613-619.	1.2	13
160	Behavioral Despair and Home-Cage Activity in Mice with Chronically Elevated Baseline Corticosterone Concentrations. Behavior Genetics, 2009, 39, 192-201.	1.4	97
161	Epigenetic Effects on Integration of Limb Lengths in a Mouse Model: Selective Breeding for High Voluntary Locomotor Activity. Evolutionary Biology, 2009, 36, 88.	0.5	20
162	Repeatability and correlation of swimming performances and size over varying timeâ€scales in the guppy (<i>Poecilia reticulata</i>). Functional Ecology, 2009, 23, 969-978.	1.7	67

#	Article	IF	CITATIONS
163	New multivariate tests for phylogenetic signal and trait correlations applied to ecophysiological phenotypes of nine <i>Manglietia</i> species. Functional Ecology, 2009, 23, 1059-1069.	1.7	29
164	THE EVOLUTION OF HIGH SUMMIT METABOLISM AND COLD TOLERANCE IN BIRDS AND ITS IMPACT ON PRESENT-DAY DISTRIBUTIONS. Evolution; International Journal of Organic Evolution, 2009, 63, 184-194.	1.1	108
165	Lines of mice with chronically elevated baseline corticosterone levels are more susceptible to a parasitic nematode infection. Zoology, 2009, 112, 316-324.	0.6	20
166	Voluntary Exercise and Its Effects on Body Composition Depend on Genetic Selection History. Obesity, 2009, 17, 1402-1409.	1.5	43
167	Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1939-1948.	1.2	700
168	Experimental Evolution., 2009,,.		175
169	Basal Metabolic Rate of Aged Mice Is Affected by Random Genetic Drift But Not by Selective Breeding for High Earlyâ€Age Locomotor Activity or Chronic Wheel Access. Physiological and Biochemical Zoology, 2008, 81, 288-300.	0.6	34
170	The relative importance of genetics and phenotypic plasticity in dictating bone morphology and mechanics in aged mice: Evidence from an artificial selection experiment. Zoology, 2008, 111, 135-147.	0.6	23
171	Circadian pattern of total and free corticosterone concentrations, corticosteroid-binding globulin, and physical activity in mice selectively bred for high voluntary wheel-running behavior. General and Comparative Endocrinology, 2008, 156, 210-217.	0.8	112
172	Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 149, 490-500.	0.7	31
173	Morphometrics of the Avian Small Intestine Compared with That of Nonflying Mammals: A Phylogenetic Approach. Physiological and Biochemical Zoology, 2008, 81, 526-550.	0.6	248
174	Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8321-8326.	3.3	171
175	Protein Synthesis and Antioxidant Capacity in Aging Mice: Effects of Longâ€Term Voluntary Exercise. Physiological and Biochemical Zoology, 2008, 81, 148-157.	0.6	32
176	Phenotypic Effects of the "Mini-Muscle" Allele in a Large HR x C57BL/6J Mouse Backcross. Journal of Heredity, 2008, 99, 349-354.	1.0	36
177	Selective breeding as a tool to probe skeletal response to high voluntary locomotor activity in mice. Integrative and Comparative Biology, 2008, 48, 394-410.	0.9	37
178	Fine Mapping of "Mini-Muscle," a Recessive Mutation Causing Reduced Hindlimb Muscle Mass in Mice. Journal of Heredity, 2008, 99, 679-687.	1.0	39
179	Differential response to a selective cannabinoid receptor antagonist (SR141716: rimonabant) in female mice from lines selectively bred for high voluntary wheel-running behaviour. Behavioural Pharmacology, 2008, 19, 812-820.	0.8	72
180	Selective Breeding for a Behavioral Trait Changes Digit Ratio. PLoS ONE, 2008, 3, e3216.	1.1	12

#	Article	IF	Citations
181	Fiber capillarization is augmented in the gastrocnemius muscle of mighty miniâ€muscled mice. FASEB Journal, 2008, 22, 757.18.	0.2	0
182	The primate semicircular canal system and locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10808-10812.	3.3	337
183	Leptin Levels and Body Composition of Mice Selectively Bred for High Voluntary Locomotor Activity. Physiological and Biochemical Zoology, 2007, 80, 568-579.	0.6	47
184	Baseline and Stressâ€Induced Plasma Corticosterone Concentrations of Mice Selectively Bred for High Voluntary Wheel Running. Physiological and Biochemical Zoology, 2007, 80, 146-156.	0.6	122
185	Within-Species Variation and Measurement Error in Phylogenetic Comparative Methods. Systematic Biology, 2007, 56, 252-270.	2.7	398
186	Relationships among running performance, aerobic physiology and organ mass in male Mongolian gerbils. Journal of Experimental Biology, 2007, 210, 4179-4197.	0.8	66
187	Behavioural and physiological responses to increased foraging effort in male mice. Journal of Experimental Biology, 2007, 210, 2013-2024.	0.8	54
188	A BRIEF OPPORTUNITY TO RUN DOES NOT FUNCTION AS A REINFORCER FOR MICE SELECTED FOR HIGH DAILY WHEELâ€RUNNING RATES. Journal of the Experimental Analysis of Behavior, 2007, 88, 199-213.	0.8	63
189	Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 109-118.	0.7	29
190	Morphometry, ultrastructure, myosin isoforms, and metabolic capacities of the "mini muscles― favoured by selection for high activity in house mice. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 144, 271-282.	0.7	39
191	Phenotypic plasticity and experimental evolution. Journal of Experimental Biology, 2006, 209, 2344-2361.	0.8	259
192	Maximal oxygen consumption in relation to subordinate traits in lines of house mice selectively bred for high voluntary wheel running. Journal of Applied Physiology, 2006, 101, 477-485.	1.2	71
193	Developmental regulation of skull morphology II: ontogenetic dynamics of covariance. Evolution & Development, 2006, 8, 46-60.	1.1	75
194	Sexual size dimorphism in a Drosophila clade, the D. obscura group. Zoology, 2006, 109, 318-330.	0.6	63
195	Artificial Selection for Increased Maternal Defense Behavior in Mice. Behavior Genetics, 2006, 36, 713-722.	1.4	35
196	Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice. Journal of Morphology, 2006, 267, 360-374.	0.6	88
197	Effects of Size, Sex, and Voluntary Running Speeds on Costs of Locomotion in Lines of Laboratory Mice Selectively Bred for High Wheelâ€Running Activity. Physiological and Biochemical Zoology, 2006, 79, 83-99.	0.6	79
198	Maximum aerobic performance in lines of Mus selected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype. Journal of Experimental Biology, 2006, 209, 115-127.	0.8	75

#	Article	IF	Citations
199	AMP-Activated Protein Kinase Is Involved in Endothelial NO Synthase Activation in Response to Shear Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1281-1287.	1.1	182
200	Clostridial enteropathy in lactating outbred swiss-derived (ICR) mice. Journal of the American Association for Laboratory Animal Science, 2006, 45, 80-7.	0.6	11
201	SELECTIVE BREEDING FOR HIGH ENDURANCE RUNNING INCREASES HINDLIMB SYMMETRY. Evolution; International Journal of Organic Evolution, 2005, 59, 1851-1854.	1.1	59
202	Contractile abilities of normal and "mini―triceps surae muscles from mice (Mus domesticus) selectively bred for high voluntary wheel running. Journal of Applied Physiology, 2005, 99, 1308-1316.	1.2	52
203	Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running. Journal of Experimental Biology, 2005, 208, 2447-2458.	0.8	81
204	SELECTIVE BREEDING FOR HIGH ENDURANCE RUNNING INCREASES HINDLIMB SYMMETRY. Evolution; International Journal of Organic Evolution, 2005, 59, 1851.	1.1	4
205	Selection Experiments as a Tool in Evolutionary and Comparative Physiology: Insights into Complex Traits-an Introduction to the Symposium. Integrative and Comparative Biology, 2005, 45, 387-390.	0.9	57
206	Phenotypic and Evolutionary Plasticity of Organ Masses in Response to Voluntary Exercise in House Mice. Integrative and Comparative Biology, 2005, 45, 426-437.	0.9	74
207	Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 2005, 208, 3015-3035.	0.8	584
208	Comparative effectiveness of Longworth and Sherman live traps. Wildlife Society Bulletin, 2005, 33, 1018-1026.	1.6	65
209	Muscle fiber-type variation in lizards (Squamata) and phylogenetic reconstruction of hypothesized ancestral states. Journal of Experimental Biology, 2005, 208, 4529-4547.	0.8	47
210	Neurobiology of Mice Selected for High Voluntary Wheel-running Activity. Integrative and Comparative Biology, 2005, 45, 438-455.	0.9	176
211	Selective breeding for high endurance running increases hindlimb symmetry. Evolution; International Journal of Organic Evolution, 2005, 59, 1851-4.	1.1	15
212	Effects of voluntary exercise and genetic selection for high activity levels on HSP72 expression in house mice. Journal of Applied Physiology, 2004, 96, 1270-1276.	1.2	34
213	Voluntary running in deer mice: speed, distance, energy costs and temperature effects. Journal of Experimental Biology, 2004, 207, 3839-3854.	0.8	90
214	Kidney Mass and Relative Medullary Thickness of Rodents in Relation to Habitat, Body Size, and Phylogeny. Physiological and Biochemical Zoology, 2004, 77, 346-365.	0.6	71
215	Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evolution & Development, 2004, 6, 194-206.	1.1	131
216	CLIMATIC ADAPTATION AND THE EVOLUTION OF BASAL AND MAXIMUM RATES OF METABOLISM IN RODENTS. Evolution; International Journal of Organic Evolution, 2004, 58, 1361-1374.	1.1	179

#	Article	IF	CITATIONS
217	Locomotor performance and social dominance in male Anolis cristatellus. Animal Behaviour, 2004, 67, 37-47.	0.8	182
218	Are Megabats Big?. Journal of Mammalian Evolution, 2004, 11, 257-277.	1.0	32
219	Opioid-mediated pain sensitivity in mice bred for high voluntary wheel running. Physiology and Behavior, 2004, 83, 515-524.	1.0	34
220	Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. Journal of Evolutionary Biology, 2003, 16 , $708-720$.	0.8	75
221	TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE. Evolution; International Journal of Organic Evolution, 2003, 57, 717-745.	1.1	3,594
222	ONTOGENIES IN MICE SELECTED FOR HIGH VOLUNTARY WHEEL-RUNNING ACTIVITY. I. MEAN ONTOGENIES. Evolution; International Journal of Organic Evolution, 2003, 57, 646-657.	1.1	39
223	Food wasting by house mice: variation among individuals, families, and genetic lines. Physiology and Behavior, 2003, 80, 375-383.	1.0	50
224	Predatory aggression, but not maternal or intermale aggression, is associated with high voluntary wheel-running behavior in mice. Hormones and Behavior, 2003, 44, 209-221.	1.0	54
225	Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running Behavioral Neuroscience, 2003, 117, 1006-1016.	0.6	225
226	TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE. Evolution; International Journal of Organic Evolution, 2003, 57, 717.	1.1	385
227	Different Effects of Intensity and Duration of Locomotor Activity on Circadian Period. Journal of Biological Rhythms, 2003, 18, 491-501.	1.4	21
228	Artificial selection for high activity favors mighty mini-muscles in house mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R433-R443.	0.9	66
229	Patterns of Brain Activity Associated With Variation in Voluntary Wheel-Running Behavior Behavioral Neuroscience, 2003, 117, 1243-1256.	0.6	218
230	EVOLUTION OF A SMALL-MUSCLE POLYMORPHISM IN LINES OF HOUSE MICE SELECTED FOR HIGH ACTIVITY LEVELS. Evolution; International Journal of Organic Evolution, 2002, 56, 1267.	1.1	4
231	Dominance, plasma testosterone levels, and testis size in house mice artificially selected for high activity levels. Physiology and Behavior, 2002, 77, 27-38.	1.0	32
232	LIZARD HOME RANGES REVISITED: EFFECTS OF SEX, BODY SIZE, DIET, HABITAT, AND PHYLOGENY. Ecology, 2002, 83, 1870-1885.	1.5	177
233	EVOLUTION OF A SMALL-MUSCLE POLYMORPHISM IN LINES OF HOUSE MICE SELECTED FOR HIGH ACTIVITY LEVELS. Evolution; International Journal of Organic Evolution, 2002, 56, 1267-1275.	1.1	133
234	Antioxidant Gene Expression in Active and Sedentary House Mice (Mus domesticus) Selected for High Voluntary Wheel-Running Behavior. Genetics, 2002, 161, 1763-1769.	1.2	15

#	Article	IF	CITATIONS
235	A Generalized Permutation Model for the Analysis of Cross-Species Data. Journal of Classification, 2001, 18, 109-127.	1.2	62
236	Integrating Function and Ecology in Studies of Adaptation: Investigations of Locomotor Capacity as a Model System. Annual Review of Ecology, Evolution, and Systematics, 2001, 32, 367-396.	6.7	394
237	Limb and tail lengths in relation to substrate usage inTropidurus lizards. Journal of Morphology, 2001, 248, 151-164.	0.6	98
238	Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). Journal of Morphology, 2001, 250, 265-280.	0.6	50
239	Open-field behavior of house mice selectively bred for high voluntary wheel-running. Behavior Genetics, 2001, 31, 309-316.	1.4	83
240	Diet, phylogeny, and basal metabolic rate in phyllostomid bats. Zoology, 2001, 104, 49-58.	0.6	82
241	Phylogenetic comparison and artificial selection. Advances in Experimental Medicine and Biology, 2001, , 107-132.	0.8	24
242	The Quantitative Genetics of Maximal and Basal Rates of Oxygen Consumption in Mice. Genetics, 2001, 159, 267-277.	1.2	110
243	Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity. Behavior Genetics, 2000, 30, 85-94.	1.4	43
244	Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice <i>Mus domesticus</i> . Journal of Applied Physiology, 2000, 89, 1608-1616.	1.2	126
245	Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope. Behavioral Ecology, 2000, 11, 452-463.	1.0	138
246	Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods. American Naturalist, 2000, 155, 346-364.	1.0	761
247	Effects of genetic selection and voluntary activity on the medial gastrocnemius muscle in house mice. Journal of Applied Physiology, 1999, 87, 2326-2333.	1.2	34
248	Polytomies and Phylogenetically Independent Contrasts: Examination of the Bounded Degrees of Freedom Approach. Systematic Biology, 1999, 48, 547-558.	2.7	124
249	An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values. American Zoologist, 1999, 39, 374-388.	0.7	540
250	Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. Journal of Zoology, 1999, 248, 255-265.	0.8	151
251	Laboratory endurance capacity predicts variation in field locomotor behaviour among lizard species. Animal Behaviour, 1999, 58, 77-83.	0.8	79
252	Behaviour of house mice artificially selected for high levels of voluntary wheel running. Animal Behaviour, 1999, 58, 1307-1318.	0.8	125

#	Article	IF	Citations
253	Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length., 1999, 248, 255.		105
254	Artificial selection for increased wheel-running behavior in house mice. Behavior Genetics, 1998, 28, 227-237.	1.4	340
255	Glucocorticoid Response to Forced Exercise in Laboratory House Mice (Mus domesticus). Physiology and Behavior, 1998, 63, 279-285.	1.0	74
256	Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. Biological Conservation, 1998, 86, 243-255.	1.9	224
257	Effects of Branch Length Errors on the Performance of Phylogenetically Independent Contrasts. Systematic Biology, 1998, 47, 654-672.	2.7	217
258	Physiological Variation and Allometry in Western Whiptail Lizards (Cnemidophorus tigris) from a Transect across a Persistent Hybrid Zone. Copeia, 1998, 1998, 1.	1.4	18
259	Effects of voluntary activity and genetic selection on aerobic capacity in house mice (<i>Mus) Tj ETQq1 1 0.7843</i>	14 rgBT /C 1.2	Dverlock 10 191
260	Quantitative Genetics of Sprint Running Speed and Swimming Endurance in Laboratory House Mice (Mus domesticus). Evolution; International Journal of Organic Evolution, 1996, 50, 1688.	1.1	29
261	QUANTITATIVE GENETICS OF SPRINT RUNNING SPEED AND SWIMMING ENDURANCE IN LABORATORY HOUSE MICE (<i>MUS DOMESTICUS</i>). Evolution; International Journal of Organic Evolution, 1996, 50, 1688-1701.	1.1	80
262	Testing Hypotheses of Correlated Evolution Using Phylogenetically Independent Contrasts: Sensitivity to Deviations from Brownian Motion. Systematic Biology, 1996, 45, 27-47.	2.7	274
263	THE EVOLUTION OF ENDOTHERMY: TESTING THE AEROBIC CAPACITY MODEL. Evolution; International Journal of Organic Evolution, 1995, 49, 836-847.	1.1	199
264	Quantitative Genetics of Locomotor Speed and Endurance in the Lizard Lacerta vivipara. Physiological Zoology, 1995, 68, 698-720.	1.5	95
265	EVOLUTION OF SPRINT SPEED IN LACERTID LIZARDS: MORPHOLOGICAL, PHYSIOLOGICAL, AND BEHAVIORAL COVARIATION. Evolution; International Journal of Organic Evolution, 1995, 49, 848-863.	1.1	136
266	Locomotor Performance and Activity Energetics of Helodermatid Lizards. Copeia, 1995, 1995, 577.	1.4	21
267	The Evolution of Endothermy: Testing the Aerobic Capacity Model. Evolution; International Journal of Organic Evolution, 1995, 49, 836.	1.1	78
268	Maximal sprint speeds and muscle fiber composition of wild and laboratory house mice. Physiology and Behavior, 1995, 58, 869-876.	1.0	47
269	Evolution of Sprint Speed in Lacertid Lizards: Morphological, Physiological and Behavioral Covariation. Evolution; International Journal of Organic Evolution, 1995, 49, 848.	1.1	278
270	Chapter 11. Phylogenetic Analyses of Lizard Endurance Capacity in Relation to Body Size and Body Temperature., 1994,, 237-260.		55

#	Article	IF	CITATIONS
271	Why Not to Do Two-Species Comparative Studies: Limitations on Inferring Adaptation. Physiological Zoology, 1994, 67, 797-828.	1.5	633
272	Does metatarsal/femur ratio predict maximal running speed in cursorial mammals?. Journal of Zoology, 1993, 229, 133-151.	0.8	247
273	Quantitative Genetics of Scale Counts in the Garter Snake Thamnophis sirtalis. Copeia, 1993, 1993, 987.	1.4	36
274	Phylogenetic Analysis of Covariance by Computer Simulation. Systematic Biology, 1993, 42, 265.	2.7	98
275	Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts. Systematic Biology, 1992, 41, 18.	2.7	215
276	Rate Tests for Phenotypic Evolution Using Phylogenetically Independent Contrasts. American Naturalist, 1992, 140, 509-519.	1.0	220
277	Individual variation in locomotor behavior and maximal oxygen consumption in mice. Physiology and Behavior, 1992, 52, 97-104.	1.0	87
278	PHYLOGENY AND COADAPTATION OF THERMAL PHYSIOLOGY IN LIZARDS: A REANALYSIS. Evolution; International Journal of Organic Evolution, 1991, 45, 1969-1975.	1.1	128
279	PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY. Evolution; International Journal of Organic Evolution, 1991, 45, 534-557.	1.1	642
280	Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): Quantitative genetics and morphometric correlates. Evolutionary Ecology, 1989, 3, 240-252.	0.5	138
281	Time Budgets, Thermoregulation, and Maximal Locomotor Performance: Are Reptiles Olympians or Boy Scouts?. American Zoologist, 1988, 28, 927-938.	0.7	158
282	Genetic Basis of Activity Metabolism. I. Inheritance of Speed, Stamina, and Antipredator Displays in the Garter Snake Thamnophis sirtalis. Evolution; International Journal of Organic Evolution, 1988, 42, 335.	1.1	59
283	GENETIC BASIS OF ACTIVITY METABOLISM. I. INHERITANCE OF SPEED, STAMINA, AND ANTIPREDATOR DISPLAYS IN THE GARTER SNAKE THAMNOPHIS SIRTALIS. Evolution; International Journal of Organic Evolution, 1988, 42, 335-350.	1.1	151
284	TESTING SYMMORPHOSIS: DOES STRUCTURE MATCH FUNCTIONAL REQUIREMENTS?. Evolution; International Journal of Organic Evolution, 1987, 41, 1404-1409.	1.1	82
285	Testing Symmorphosis: Does Structure Match Functional Requirements?. Evolution; International Journal of Organic Evolution, 1987, 41, 1404.	1.1	23
286	Locomotory Capacities, Oxygen Consumption, and the Cost of Locomotion of the Shingle-Back Lizard (Trachydosaurus rugosus). Physiological Zoology, 1986, 59, 523-531.	1.5	65
287	Effects of a Full Stomach on Locomotory Performance of Juvenile Garter Snakes (Thamnophis) Tj ETQq1 1 0.7843	14 rgBT /C 1.4	Dverlock 10 113
288	Scaling the Ecological Cost of Transport to Body Mass in Terrestrial Mammals. American Naturalist, 1983, 121, 571-587.	1.0	256

#	Article	IF	CITATIONS
289	Determinants of lizard escape performance: decision, motivation, ability, and opportunity., 0,, 287-321.		19
290	Skink ecomorphology: forelimb and hind limb lengths, but not static stability, correlate with habitat use and demonstrate multiple solutions. Biological Journal of the Linnean Society, 0, , .	0.7	6