Andrew G Livingston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6183794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving. Nature Materials, 2022, 21, 463-470.	27.5	108
2	Graft modification of polybenzimidazole membranes for organic solvent ultrafiltration with scale up to spiral wound modules. Journal of Membrane Science, 2022, 647, 120199.	8.2	8
3	Multimodal confined water dynamics in reverse osmosis polyamide membranes. Nature Communications, 2022, 13, 2809.	12.8	16
4	Liquid Phase Peptide Synthesis via Oneâ€Pot Nanostar Sieving (PEPSTAR). Angewandte Chemie - International Edition, 2021, 60, 7786-7795.	13.8	20
5	Liquid Phase Peptide Synthesis via Oneâ€Pot Nanostar Sieving (PEPSTAR). Angewandte Chemie, 2021, 133, 7865-7874.	2.0	4
6	Membrane Fouling: Does Microscale Roughness Matter?. Industrial & Engineering Chemistry Research, 2020, 59, 5424-5431.	3.7	31
7	On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination. Journal of Membrane Science, 2020, 594, 117339.	8.2	14
8	<i>N</i> -Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science, 2020, 369, 310-315.	12.6	139
9	Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction. Energy and Environmental Science, 2020, 13, 4862-4871.	30.8	18
10	Proteins tailor pore geometry. Nature Materials, 2020, 19, 257-258.	27.5	3
11	Nanoscale Chemical Heterogeneity in Aromatic Polyamide Membranes for Reverse Osmosis Applications. ACS Applied Materials & Interfaces, 2020, 12, 19890-19902.	8.0	12
12	Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection. , 2019, 1, 440-446.		55
13	Membrane Fractionation of Liquors from Ligninâ€First Biorefining. ChemSusChem, 2019, 12, 1203-1212.	6.8	39
14	Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving. Nature Chemistry, 2019, 11, 136-145.	13.6	64
15	Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis. Advanced Materials, 2018, 30, e1705973.	21.0	266
16	Iterative peptide synthesis in membrane cascades: Untangling operational decisions. Computers and Chemical Engineering, 2018, 115, 275-285.	3.8	3
17	A robust thin film composite membrane incorporating thermally rearranged polymer support for organic solvent nanofiltration and pressure retarded osmosis. Journal of Membrane Science, 2018, 550, 322-331.	8.2	100
18	Solvent-Free Coating of Epoxysilicones for the Fabrication of Composite Membranes. Industrial & Engineering Chemistry Research, 2018, 57, 730-739.	3.7	12

#	Article	IF	CITATIONS
19	Roll-to-roll dip coating of three different PIMs for Organic Solvent Nanofiltration. Journal of Membrane Science, 2018, 558, 52-63.	8.2	83
20	A compact and scalable fabrication method for robust thin film composite membranes. Green Chemistry, 2018, 20, 1887-1898.	9.0	31
21	PECVD modification of nano & ultrafiltration membranes for organic solvent nanofiltration. Journal of Membrane Science, 2018, 548, 540-547.	8.2	11
22	Thin Films: Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis (Adv.) Tj ETQq0 0	0 rgBT /C 21.0	verlock 10 Tf
23	Membranes from academia to industry. Nature Materials, 2017, 16, 280-282.	27.5	84
24	Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers. Journal of Membrane Science, 2017, 534, 9-17.	8.2	29
25	The Selectivity Challenge in Organic Solvent Nanofiltration: Membrane and Process Solutions. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 473-497.	6.8	94
26	Implication of Side Reactions in Iterative Biopolymer Synthesis: The Case of Membrane Enhanced Peptide Synthesis. Industrial & Engineering Chemistry Research, 2017, 56, 6796-6804.	3.7	8
27	Continuously Operated Hydroamination – Toward High Catalytic Performance via Organic Solvent Nanofiltration in a Membrane Reactor. Industrial & Engineering Chemistry Research, 2017, 56, 13634-13641.	3.7	11
28	Neutron Reflectivity and Performance of Polyamide Nanofilms for Water Desalination. Advanced Functional Materials, 2017, 27, 1701738.	14.9	47
29	Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. Journal of Membrane Science, 2017, 525, 35-47.	8.2	54
30	Negligible ageing in poly(ether-ether-ketone) membranes widens application range for solvent processing. Journal of Membrane Science, 2017, 525, 48-56.	8.2	62
31	Controlling biofilm development in the extractive membrane bioreactor. Separation Science and Technology, 2017, 52, 113-121.	2.5	16
32	Optimization of OSN Membrane Cascades for Separating Organic Mixtures. Computer Aided Chemical Engineering, 2016, , 379-384.	0.5	10
33	Researchers develop "designerâ€chemical separation membranes. Membrane Technology, 2016, 2016, 7.	0.1	1
34	Multi-scale modelling of OSN batch concentration with spiral-wound membrane modules using OSN Designer. Chemical Engineering Research and Design, 2016, 109, 385-396.	5.6	14
35	Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nature Materials, 2016, 15, 760-767.	27.5	594
36	Continuous Consecutive Reactions with Interâ€Reaction Solvent Exchange by Membrane Separation. Angewandte Chemie - International Edition, 2016, 55, 13576-13579.	13.8	34

#	Article	IF	CITATIONS
37	Continuous Consecutive Reactions with Interâ€Reaction Solvent Exchange by Membrane Separation. Angewandte Chemie, 2016, 128, 13774-13777.	2.0	20
38	Organic fouling behaviour of structurally and chemically different forward osmosis membranes – A study of cellulose triacetate and thin film composite membranes. Journal of Membrane Science, 2016, 520, 247-261.	8.2	79
39	Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers. Journal of Membrane Science, 2016, 520, 465-476.	8.2	107
40	Organic Solvent Nanofiltration (OSN): A New Technology Platform for Liquid-Phase Oligonucleotide Synthesis (LPOS). Organic Process Research and Development, 2016, 20, 1439-1452.	2.7	46
41	Solvent recycle with imperfect membranes: A semi-continuous workaround for diafiltration. Journal of Membrane Science, 2016, 514, 646-658.	8.2	54
42	Hybrid polymer/MOF membranes for Organic Solvent Nanofiltration (OSN): Chemical modification and the quest for perfection. Journal of Membrane Science, 2016, 503, 166-176.	8.2	135
43	Towards improved membrane production: using low-toxicity solvents for the preparation of PEEK nanofiltration membranes. Green Chemistry, 2016, 18, 2374-2384.	9.0	50
44	Energy consumption for desalination $\hat{a} \in$ " A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes. Desalination, 2016, 377, 138-151.	8.2	158
45	Liquidâ€Phase Synthesis of 2′â€Methylâ€RNA on a Homostar Support through Organicâ€Solvent Nanofiltration. Chemistry - A European Journal, 2015, 21, 9535-9543.	3.3	17
46	Tunable-Porosity Membranes From Discrete Nanoparticles. Scientific Reports, 2015, 5, 17353.	3.3	24
47	"Crumpled―filter has the potential to slash energy consumption in industry. Membrane Technology, 2015, 2015, 7.	0.1	0
48	Novel <scp>MBRs</scp> for the removal of organic priority pollutants from industrial wastewaters: a review. Journal of Chemical Technology and Biotechnology, 2015, 90, 1949-1967.	3.2	32
49	Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes. Journal of Membrane Science, 2015, 479, 105-116.	8.2	132
50	Performance of spiral-wound membrane modules in organic solvent nanofiltration – Fluid dynamics and mass transfer characteristics. Journal of Membrane Science, 2015, 494, 8-24.	8.2	21
51	Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters. Journal of Membrane Science, 2015, 493, 568-579.	8.2	115
52	Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. Journal of Membrane Science, 2015, 493, 524-538.	8.2	63
53	Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science, 2015, 348, 1347-1351.	12.6	1,461
54	Improving the permeance of hybrid polymer/metal–organic framework (MOF) membranes for organic solvent nanofiltration (OSN) – development of MOF thin films via interfacial synthesis. Journal of Materials Chemistry A, 2015, 3, 9668-9674.	10.3	142

#	Article	IF	CITATIONS
55	Predictive membrane transport models for Organic Solvent Nanofiltration: How complex do we need to be?. Journal of Membrane Science, 2015, 476, 530-553.	8.2	67
56	Molecularly imprinted organic solvent nanofiltration membranes – Revealing molecular recognition and solute rejection behaviour. Reactive and Functional Polymers, 2015, 86, 215-224.	4.1	56
57	Synthesis and characterization of branched fullerene-terminated poly(ethylene glycol)s. Polymer Chemistry, 2015, 6, 1056-1065.	3.9	4
58	Racemisation of 1-Arylethylamines with Shvo-type Organoruthenium Catalysts. Synlett, 2014, 25, 1391-1394.	1.8	3
59	Beyond PEG2000: Synthesis and Functionalisation of Monodisperse PEGylated Homostars and Clickable Bivalent Polyethyleneglycols. Chemistry - A European Journal, 2014, 20, 10038-10051.	3.3	37
60	Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade. Chemical Engineering Science, 2014, 116, 183-194.	3.8	69
61	Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. Journal of Membrane Science, 2014, 457, 62-72.	8.2	219
62	Mixed matrix membranes for organic solvent nanofiltration. Journal of Membrane Science, 2014, 452, 354-366.	8.2	111
63	Polyamide thin film composite membranes on cross-linked polyimide supports: Improvement of RO performance via activating solvent. Desalination, 2014, 344, 181-188.	8.2	83
64	Fabrication of hybrid polymer/metal organic framework membranes: mixed matrix membranes versus in situ growth. Journal of Materials Chemistry A, 2014, 2, 9260-9271.	10.3	141
65	Increasing the sustainability of membrane processes through cascade approach and solvent recovery—pharmaceutical purification case study. Green Chemistry, 2014, 16, 133-145.	9.0	89
66	Iterative synthesis of monodisperse PEG homostars and linear heterobifunctional PEG. Polymer Chemistry, 2014, 5, 694-697.	3.9	37
67	Molecular Separation with Organic Solvent Nanofiltration: A Critical Review. Chemical Reviews, 2014, 114, 10735-10806.	47.7	1,276
68	Controlling Crystallization via Organic Solvent Nanofiltration: The Influence of Flux on Griseofulvin Crystallization. Crystal Growth and Design, 2014, 14, 2192-2200.	3.0	14
69	Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chemistry, 2014, 16, 4440-4473.	9.0	287
70	In Situ Solvent Recovery by Organic Solvent Nanofiltration. ACS Sustainable Chemistry and Engineering, 2014, 2, 2371-2379.	6.7	71
71	Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes. Advanced Functional Materials, 2014, 24, 4729-4737.	14.9	235
72	Use of Continuous MSMPR Crystallization with Integrated Nanofiltration Membrane Recycle for Enhanced Yield and Purity in API Crystallization. Crystal Growth and Design, 2014, 14, 617-627.	3.0	88

#	Article	IF	CITATIONS
73	Pore preserving crosslinkers for polyimide OSN membranes. Journal of Membrane Science, 2014, 465, 138-150.	8.2	48
74	Experimental strategies for increasing the catalyst turnover number in a continuous Heck coupling reaction. Journal of Catalysis, 2013, 306, 190-201.	6.2	46
75	On the Potential of Organic Solvent Nanofiltration in Continuous Heck Coupling Reactions. Organic Process Research and Development, 2013, 17, 967-975.	2.7	38
76	Beneath the surface: Influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration. Journal of Membrane Science, 2013, 448, 102-113.	8.2	164
77	Molecular separation with an organic solvent nanofiltration cascade – augmenting membrane selectivity with process engineering. Chemical Engineering Science, 2013, 90, 299-310.	3.8	42
78	When the membrane is not enough: A simplified membrane cascade using Organic Solvent Nanofiltration (OSN). Separation and Purification Technology, 2013, 116, 277-286.	7.9	56
79	OSN Designer, a tool for predicting organic solvent nanofiltration technology performance using Aspen One, MATLAB and CAPE OPEN. Chemical Engineering Science, 2013, 104, 975-987.	3.8	36
80	High Flux Thin Film Nanocomposite Membranes Based on Metal–Organic Frameworks for Organic Solvent Nanofiltration. Journal of the American Chemical Society, 2013, 135, 15201-15208.	13.7	663
81	Quality by Design for peptide nanofiltration: Fundamental understanding and process selection. Chemical Engineering Science, 2013, 101, 200-212.	3.8	21
82	Batchwise and Continuous Nanofiltration of POSSâ€Tagged Grubbs–Hoveydaâ€Type Olefin Metathesis Catalysts. ChemSusChem, 2013, 6, 182-192.	6.8	61
83	Nanoparticle contrast agents to elucidate the structure of thin film composite nanofiltration membranes. Journal of Membrane Science, 2013, 442, 107-118.	8.2	15
84	NF in organic solvent/water mixtures: Role of preferential solvation. Journal of Membrane Science, 2013, 444, 101-115.	8.2	35
85	Pore-flow calculations based on pore size distributions in polyimide membranes determined by a nanoprobe imaging technique. Chemical Engineering Science, 2013, 97, 81-95.	3.8	10
86	Efficient and productive asymmetric Michael addition: development of a highly enantioselective quinidine-based organocatalyst for homogeneous recycling via nanofiltration. Green Chemistry, 2013, 15, 663.	9.0	43
87	Reactive Peptide Nanofiltration. ACS Symposium Series, 2013, , 121-150.	0.5	7
88	High flux hydrophobic membranes for organic solvent nanofiltration (OSN)—Interfacial polymerization, surface modification and solvent activation. Journal of Membrane Science, 2013, 434, 193-203.	8.2	181
89	Assessment of atomic force microscopy for characterisation of nanofiltration membranes. Journal of Membrane Science, 2013, 425-426, 58-70.	8.2	71
90	Continuous solute fractionation with membrane cascades – A high productivity alternative to diafiltration. Separation and Purification Technology, 2013, 102, 1-14.	7.9	53

#	Article	IF	CITATIONS
91	Membranes for Organic Solvent Nanofiltration Based on Preassembled Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 1109-1121.	3.7	44
92	Hybrid Organic-inorganic Membranes for Organic Solvent Nanofiltration. Procedia Engineering, 2012, 44, 96-99.	1.2	1
93	Development of Organic Solvent Nanofiltration Membranes for the Application in Extreme pH Conditions. Procedia Engineering, 2012, 44, 313-315.	1.2	3
94	Cellulose Acetate Forward Osmosis Membranes-Effect of Membrane Chemistry on FO Performance. Procedia Engineering, 2012, 44, 258-260.	1.2	2
95	OSN as an Useful Tool in the Development of a Better Process for the Synthesis of Macrocycles. Procedia Engineering, 2012, 44, 1249-1250.	1.2	0
96	Improved Model for Solvent Permeation Through NF and UF Membranes. Procedia Engineering, 2012, 44, 394-397.	1.2	3
97	The Effect of Concentration Polarisation on Organic Solvent Nanofiltration Crystallisation Processes. Procedia Engineering, 2012, 44, 241-243.	1.2	0
98	Nanoprobe imaging molecular scale pores in polymeric membranes. Journal of Membrane Science, 2012, 413-414, 1-16.	8.2	36
99	An improved phenomenological model for prediction of solvent permeation through ceramic NF and UF membranes. Journal of Membrane Science, 2012, 415-416, 444-458.	8.2	62
100	Speciation of Pd(OAc) ₂ in ligandless Suzuki–Miyaura reactions. Catalysis Science and Technology, 2012, 2, 316-323.	4.1	86
101	High flux membranes for organic solvent nanofiltration (OSN)—Interfacial polymerization with solvent activation. Journal of Membrane Science, 2012, 423-424, 371-382.	8.2	318
102	Novel Liquid Phase Peptide Synthesis (LPPS) Technology: Elongation using Organic Solvent Nanofiltration (OSN). Procedia Engineering, 2012, 44, 1232-1233.	1.2	0
103	Potential of Organic Solvent Nanofiltration in Continuous Catalytic Reactions. Procedia Engineering, 2012, 44, 307-309.	1.2	7
104	A Multi-Scale Model for Polymer Membranes. Procedia Engineering, 2012, 44, 489-490.	1.2	0
105	Organic solvent nanofiltration: a potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chemistry, 2012, 14, 2197.	9.0	134
106	Facilitating the use of counter-current chromatography in pharmaceutical purification through use of organic solvent nanofiltration. Journal of Chromatography A, 2012, 1229, 156-163.	3.7	26
107	Separation of Reaction Product and Palladium Catalyst after a Heck Coupling Reaction by means of Organic Solvent Nanofiltration. ChemSusChem, 2012, 5, 188-193.	6.8	33
108	Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chemistry, 2011, 13, 162-168.	9.0	148

#	Article	IF	CITATIONS
109	The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice. Journal of Membrane Science, 2011, 381, 152-162.	8.2	127
110	The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part B: Analysis of evaporation step and the role of a co-solvent. Journal of Membrane Science, 2011, 381, 163-171.	8.2	82
111	The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part C. Effect of polyimide characteristics. Journal of Membrane Science, 2011, 381, 172-182.	8.2	55
112	Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution. Desalination, 2011, 273, 299-307.	8.2	91
113	Nanofiltration process for the nutritional enrichment and refining of rice bran oil. Journal of Food Engineering, 2011, 102, 16-24.	5.2	54
114	Enantioseparation via ElCâ€OSN: Process design and improvement of enantiomers resolvability and separation performance. AICHE Journal, 2010, 56, 893-904.	3.6	6
115	The regulatory logic of <i>mâ€</i> xylene biodegradation by <i>Pseudomonas putida</i> mtâ€2 exposed by dynamic modelling of the principal node <i>Ps/Pr</i> of the TOL plasmid. Environmental Microbiology, 2010, 12, 1705-1718.	3.8	38
116	A novel approach to modelling counter-current chromatography. Journal of Chromatography A, 2010, 1217, 6230-6240.	3.7	12
117	Organic solvent nanofiltration (OSN) with spiral-wound membrane elements—Highly rejected solute system. Journal of Membrane Science, 2010, 349, 167-174.	8.2	23
118	Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN). Journal of Membrane Science, 2010, 349, 123-129.	8.2	61
119	Organic Solvent Nanofiltration: A New Paradigm in Peptide Synthesis. Organic Process Research and Development, 2010, 14, 1313-1325.	2.7	45
120	Demonstration of Molecular Purification in Polar Aprotic Solvents by Organic Solvent Nanofiltration. Organic Process Research and Development, 2010, 14, 600-611.	2.7	86
121	Membrane enhanced peptide synthesis. Chemical Communications, 2010, 46, 2808.	4.1	42
122	Long-Term, Cytokine-Free Ex Vivo Expansion of Human Cord Blood Mononuclear Cells Using a Novel Closed-Loop 3D Dual Hollow Fibre Perfused Bioreactor. Blood, 2010, 116, 828-828.	1.4	0
123	A novel phase transition technique for fabrication of mesopore sized ceramic membranes. Journal of Membrane Science, 2009, 339, 5-9.	8.2	9
124	Solute molecular transport through polyimide asymmetric organic solvent nanofiltration (OSN) membranes and the effect of membrane-formation parameters on mass transfer. Journal of Membrane Science, 2009, 326, 332-342.	8.2	17
125	Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. Journal of Membrane Science, 2009, 326, 635-642.	8.2	88
126	Nanoporous asymmetric polyaniline films for filtration of organic solvents. Journal of Membrane Science, 2009, 330, 166-174.	8.2	55

#	Article	IF	CITATIONS
127	Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. Journal of Membrane Science, 2009, 343, 189-198.	8.2	201
128	Membrane characterisation by SEM, TEM and ESEM: The implications of dry and wetted microstructure on mass transfer through integrally skinned polyimide nanofiltration membranes. Separation and Purification Technology, 2009, 66, 90-97.	7.9	42
129	Enantioselective whole-cell biotransformation of acetophenone to S-phenylethanol by Rhodotorula glutinis. Biochemical Engineering Journal, 2009, 46, 44-53.	3.6	25
130	Enantioselective whole-cell biotransformation of acetophenone to S-phenylethanol by Rhodotorula glutinis. Part II. Aqueous–organic systems: Emulsion and membrane bioreactors. Biochemical Engineering Journal, 2009, 46, 54-60.	3.6	11
131	Extending Ru-BINAP Catalyst Life and Separating Products from Catalyst Using Membrane Recycling. Organic Process Research and Development, 2009, 13, 863-869.	2.7	28
132	A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranesa~†. Journal of Membrane Science, 2008, 317, 50-64.	8.2	46
133	Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes. Journal of Membrane Science, 2008, 324, 220-232.	8.2	123
134	Evidence of species succession during chlorobenzene biodegradation. Biotechnology and Bioengineering, 2008, 99, 68-74.	3.3	28
135	Membrane selectivity in the organic solvent nanofiltration of trialkylamine bases. Desalination, 2008, 218, 248-256.	8.2	25
136	Polyaniline membranes for the dehydration of tetrahydrofuran by pervaporation. Journal of Membrane Science, 2008, 309, 102-111.	8.2	43
137	Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 2008, 318, 5-37.	8.2	580
138	Polyaniline hollow fibres for organic solvent nanofiltration. Chemical Communications, 2008, , 6324.	4.1	36
139	Polymeric Membrane Nanofiltration and Its Application to Separations in the Chemical Industries. Macromolecular Symposia, 2008, 264, 184-188.	0.7	15
140	Organic Solvent Nanofiltration and Adsorbents; A Hybrid Approach to Achieve Ultra Low Palladium Contamination of Post Coupling Reaction Products. Organic Process Research and Development, 2008, 12, 589-595.	2.7	78
141	Towards a continuous dynamic kinetic resolution of 1-phenylethylamine using a membrane assisted, two vessel process. Chemical Communications, 2007, , 3462.	4.1	19
142	The use of an oil absorber as a strategy to overcome starvation periods in degrading 1,2-dichloroethane in waste gas. Biotechnology and Bioengineering, 2007, 96, 673-686.	3.3	9
143	Microbiology for chemical engineers—from macro to micro scale. Asia-Pacific Journal of Chemical Engineering, 2007, 2, 448-454.	1.5	0
144	Nanofiltration membrane cascade for continuous solvent exchange. Chemical Engineering Science, 2007, 62, 2728-2736.	3.8	95

#	Article	IF	CITATIONS
145	The use of an oil–absorber–bioscrubber system during biodegradation of sequentially alternating loadings of 1,2-dichloroethane and fluorobenzene in a waste gas. Chemical Engineering Science, 2007, 62, 5989-6001.	3.8	11
146	Simulation of the cellular anabolic activity within biofilms: Where a new immobilized cell will preferably be born?. Biochemical Engineering Journal, 2007, 35, 29-36.	3.6	6
147	In search of a standard method for the characterisation of organic solvent nanofiltration membranes. Journal of Membrane Science, 2007, 291, 120-125.	8.2	153
148	The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes. Journal of Membrane Science, 2007, 299, 236-250.	8.2	134
149	Polymeric membranes for nanofiltration in polar aprotic solvents. Journal of Membrane Science, 2007, 301, 3-10.	8.2	288
150	Investigation of the Compatibility of Racemization and Kinetic Resolution for the Dynamic Kinetic Resolution of an Allylic Alcohol. Industrial & Engineering Chemistry Research, 2006, 45, 7101-7109.	3.7	13
151	Recovery and reuse of ionic liquids and palladium catalyst for Suzuki reactions using organic solvent nanofiltration. Green Chemistry, 2006, 8, 373.	9.0	105
152	The absolute configuration of (+)-(E)-4-phenylbut-3-ene-2-ol. Organic and Biomolecular Chemistry, 2006, 4, 2081.	2.8	0
153	Organic solvent nanofiltration in asymmetric hydrogenation: enhancement of enantioselectivity and catalyst stability by ionic liquids. Chemical Communications, 2006, , 2063.	4.1	51
154	Organic Solvent Nanofiltration. , 2006, , 203-228.		2
155	An Oil-Absorberâ^'Bioscrubber System To Stabilize Biotreatment of Pollutants Present in Waste Gas.		00
	Fluctuating Loads of 1,2-Dichloroethane. Environmental Science & amp; Technology, 2006, 40, 595-602.	10.0	22
156	Development of a Liquid-Phase Process for Recycling Resolving Agents within Diastereomeric Resolutions. Organic Process Research and Development, 2006, 10, 784-793.	10.0 2.7	22
156 157	 Fluctuating Loads of 1,2-Dichloroethane. Environmental Science & amp; Technology, 2006, 40, 595-602. Development of a Liquid-Phase Process for Recycling Resolving Agents within Diastereomeric Resolutions. Organic Process Research and Development, 2006, 10, 784-793. Development of stable organic solvent nanofiltration membranes for membrane enhanced dynamic kinetic resolution. Desalination, 2006, 199, 195-197. 	10.0 2.7 8.2	22
156 157 158	Fluctuating Loads of 1,2-Dichloroethane. Environmental Science & amp; Technology, 2006, 40, 595-602. Development of a Liquid-Phase Process for Recycling Resolving Agents within Diastereomeric Resolutions. Organic Process Research and Development, 2006, 10, 784-793. Development of stable organic solvent nanofiltration membranes for membrane enhanced dynamic kinetic resolution. Desalination, 2006, 199, 195-197. The influence of membrane formation on functional performance of organic solvent nanofiltration membranes. Desalination, 2006, 199, 242-244.	10.0 2.7 8.2 8.2	22 22 17 12
156 157 158 159	 Fluctuating Loads of 1,2-Dichloroethane. Environmental Science & Amp; Technology, 2006, 40, 595-602. Development of a Liquid-Phase Process for Recycling Resolving Agents within Diastereomeric Resolutions. Organic Process Research and Development, 2006, 10, 784-793. Development of stable organic solvent nanofiltration membranes for membrane enhanced dynamic kinetic resolution. Desalination, 2006, 199, 195-197. The influence of membrane formation on functional performance of organic solvent nanofiltration membranes. Desalination, 2006, 199, 242-244. Effect of concentration polarisation in organic solvent nanofiltration – flat sheet and spiral wound systems. Desalination, 2006, 199, 248-250. 	10.0 2.7 8.2 8.2 8.2 8.2	22 22 17 12 4
156 157 158 159 160	 Fluctuating Loads of 1,2-Dichloroethane. Environmental Science & amp; Technology, 2006, 40, 595-602. Development of a Liquid-Phase Process for Recycling Resolving Agents within Diastereomeric Resolutions. Organic Process Research and Development, 2006, 10, 784-793. Development of stable organic solvent nanofiltration membranes for membrane enhanced dynamic kinetic resolution. Desalination, 2006, 199, 195-197. The influence of membrane formation on functional performance of organic solvent nanofiltration membranes. Desalination, 2006, 199, 242-244. Effect of concentration polarisation in organic solvent nanofiltration – flat sheet and spiral wound systems. Desalination, 2006, 199, 248-250. A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes. Desalination, 2006, 199, 429-431. 	10.0 2.7 8.2 8.2 8.2 8.2 8.2	22 22 17 12 4 6
156 157 158 159 160	 Fluctuating Loads of 1,2-Dichloroethane. Environmental Science & Amp; Technology, 2006, 40, 595-602. Development of a Liquid-Phase Process for Recycling Resolving Agents within Diastereomeric Resolutions. Organic Process Research and Development, 2006, 10, 784-793. Development of stable organic solvent nanofiltration membranes for membrane enhanced dynamic kinetic resolution. Desalination, 2006, 199, 195-197. The influence of membrane formation on functional performance of organic solvent nanofiltration membranes. Desalination, 2006, 199, 242-244. Effect of concentration polarisation in organic solvent nanofiltration – flat sheet and spiral wound systems. Desalination, 2006, 199, 248-250. A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes. Desalination, 2006, 199, 429-431. Chiral separation by enantioselective inclusion complexation-organic solvent nanofiltration. Desalination, 2006, 199, 398-400. 	10.0 2.7 8.2 8.2 8.2 8.2 8.2 8.2 8.2	22 22 17 12 4 6 11

#	Article	IF	CITATIONS
163	Dehydration of tetrahydrofuran by pervaporation using a composite membrane. Journal of Membrane Science, 2006, 268, 13-19.	8.2	35
164	Effect of solute concentration and mass transfer limitations on transport in organic solvent nanofiltration — partially rejected solute. Journal of Membrane Science, 2006, 280, 889-898.	8.2	38
165	Enantiomer separation by enantioselective inclusion complexation–organic solvent nanofiltration. Tetrahedron: Asymmetry, 2006, 17, 1846-1852.	1.8	35
166	Rational approach to the selection of conditions for diastereomeric resolution of chiral amines by diacid resolving agents. Tetrahedron: Asymmetry, 2006, 17, 1337-1348.	1.8	24
167	Application of thin film composite membranes to the membrane aromatic recovery system. Journal of Membrane Science, 2006, 268, 20-36.	8.2	15
168	Control of membrane-attached biofilms using surfactants. Biotechnology and Bioengineering, 2006, 94, 15-23.	3.3	40
169	Investigation of biofilm growth and attrition in a three-phase airlift bioreactor using35SO42â^' as a radiolabelled tracer. Journal of Chemical Technology and Biotechnology, 2006, 81, 858-865.	3.2	10
170	Bioremediation of Industrial and Agro-industrial Effluents. Journal of Chemical Technology and Biotechnology, 2006, 81, 1449-1449.	3.2	1
171	Stability and Performance of Xanthobacter autotrophicus GJ10 during 1,2-Dichloroethane Biodegradation. Applied and Environmental Microbiology, 2006, 72, 4411-4418.	3.1	18
172	Solvent transport in organic solvent nanofiltration membranes. Journal of Membrane Science, 2005, 262, 49-59.	8.2	153
173	Pilot scale application of the Membrane Aromatic Recovery System (MARS) for recovery of phenol from resin production condensates. Journal of Membrane Science, 2005, 257, 120-133.	8.2	25
174	The performance of composite supported polymeric liquid membranes in the Membrane Aromatic Recovery System (MARS). Chemical Engineering Science, 2005, 60, 7034-7044.	3.8	12
175	Mass transfer enhancement in the Membrane Aromatic Recovery System (MARS): theoretical analysis. Chemical Engineering Science, 2005, 60, 151-166.	3.8	14
176	Application of Organic Solvent Nanofiltration to Separation of Ionic Liquids and Products from Ionic Liquid Mediated Reactions. Chemical Engineering Research and Design, 2005, 83, 309-316.	5.6	70
177	Strain stability in biological systems treating recalcitrant organic compounds. Biotechnology and Bioengineering, 2005, 92, 843-849.	3.3	17
178	An attempt to compare the performance of bioscrubbers and biotrickling filters for degradation of ethyl acetate in gas streams. Journal of Chemical Technology and Biotechnology, 2005, 80, 1252-1260.	3.2	31
179	The synthesis of polypropylene glycol based polyethers and their use in membranes for the membrane aromatic recovery system (MARS). Journal of Membrane Science, 2005, 261, 87-97.	8.2	10
180	Mass transfer enhancement in the membrane aromatic recovery system (MARS): experimental results and comparison with theory. Chemical Engineering Science, 2005, 60, 1029-1042.	3.8	14

#	Article	IF	CITATIONS
181	An Improved Protocol for the Synthesis and Nanofiltration of Kim and Park's Aminocyclopentadienyl Ruthenium Chloride Racemisation Catalyst. Synlett, 2005, 2005, 2993-2995.	1.8	2
182	Stabilization of Supported Liquid Membranes by γ-Radiation and Their Performance in the Membrane Aromatic Recovery System. Industrial & Engineering Chemistry Research, 2005, 44, 7659-7667.	3.7	9
183	Recovery of 2,4-dichlorophenol from acidic aqueous streams by Membrane Aromatic Recovery System(MARS). Journal of Chemical Technology and Biotechnology, 2004, 79, 381-390.	3.2	6
184	Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration. Journal of Membrane Science, 2004, 236, 121-136.	8.2	122
185	Physico-chemical interpretation of the SRNF transport mechanism for solvents through dense silicone membranes. Journal of Membrane Science, 2004, 231, 99-108.	8.2	113
186	Elucidation of the mechanism of chiral selectivity in diastereomeric salt formation using organic solvent nanofiltration. Chemical Communications, 2004, , 962.	4.1	13
187	Overcoming oxygen limitations in membrane-attached biofilms—investigation of flux and diffusivity in an anoxic biofilm. Water Research, 2004, 38, 1530-1541.	11.3	9
188	A novel biphasic extractive membrane bioreactor for minimization of membrane-attached biofilms. Biotechnology and Bioengineering, 2003, 83, 8-19.	3.3	20
189	Bioscrubbing of waste gas?substrate absorber to avoid instability induced by inhibition kinetics. Biotechnology and Bioengineering, 2003, 84, 552-563.	3.3	21
190	Membrane Separation in Green Chemical Processing. Annals of the New York Academy of Sciences, 2003, 984, 123-141.	3.8	71
191	The anoxic extractive membrane bioreactor. Water Research, 2003, 37, 1231-1238.	11.3	33
192	Insights into the Transport of Toluene and Phenol Through Organic Solvent Nanofiltration Membranes. Separation Science and Technology, 2003, 38, 1899-1923.	2.5	22
193	Membrane Aromatic Recovery System (MARS) – A new process for recovering phenols and aromatic amines from aqueous streams. Membrane Science and Technology, 2003, 8, 165-181.	0.5	1
194	Identification of Multistep Reaction Stoichiometries: CAMD Problem Formulation. Computer Aided Chemical Engineering, 2003, 12, 167-209.	0.5	1
195	Case Study in Identification of Multistep Reaction Stoichiometries. Computer Aided Chemical Engineering, 2003, 12, 319-327.	0.5	0
196	Recovery of Aniline from Aqueous Solution Using the Membrane Aromatic Recovery System (MARS). Industrial & Engineering Chemistry Research, 2002, 41, 2766-2774.	3.7	34
197	Increased catalytic productivity for nanofiltration-coupled Heck reactions using highly stable catalyst systems. Green Chemistry, 2002, 4, 319-324.	9.0	46
198	Biodegradability of linear alkylbenzene sulfonates subjected to wet air oxidation. Journal of Chemical Technology and Biotechnology, 2002, 77, 1039-1049.	3.2	20

#	Article	IF	CITATIONS
199	Pervaporation-biological oxidation hybrid process for removal of volatile organic compounds from wastewaters. Journal of Membrane Science, 2002, 195, 75-88.	8.2	29
200	Selection of elastomeric membranes for the separation of organic compounds in acidic media. Journal of Membrane Science, 2002, 199, 1-11.	8.2	22
201	Braided silicone rubber membranes for organic extraction from aqueous solutions. Journal of Membrane Science, 2002, 199, 85-99.	8.2	17
202	Braided silicone rubber membranes for organic extraction from aqueous solutions. Journal of Membrane Science, 2002, 199, 101-115.	8.2	5
203	Homogeneous phase transfer catalyst recovery and re-use using solvent resistant membranes. Journal of Membrane Science, 2002, 201, 65-75.	8.2	57
204	The separation of homogeneous organometallic catalysts using solvent resistant nanofiltration. Journal of Membrane Science, 2002, 203, 71-85.	8.2	144
205	Homogeneous catalyst separation and re-use through nanofiltration of organic solvents. Desalination, 2002, 147, 301-306.	8.2	62
206	Observations on solvent flux and solute rejection across solvent resistant nanofiltration membranes. Desalination, 2002, 147, 307-313.	8.2	85
207	Membrane aromatic recovery system (MARS): lab bench to industrial pilot scale. Desalination, 2002, 148, 267-273.	8.2	31
208	Study of membrane attached biofilm performance with nitrate as electron acceptor. Desalination, 2002, 149, 211-215.	8.2	6
209	Countercurrent transport of organic and water molecules through thin film composite membranes in aqueous–aqueous extractive membrane processes. Part I: experimental characterisation. Chemical Engineering Science, 2002, 57, 4087-4098.	3.8	16
210	Countercurrent transport of organic and water molecules through thin film composite membranes in aqueous–aqueous extractive membrane processes. Part II: theoretical analysis. Chemical Engineering Science, 2002, 57, 4461-4473.	3.8	10
211	Chemical treatment of an anionic surfactant wastewater: electrospray-ms studies of intermediates and effect on aerobic biodegradability. Water Research, 2001, 35, 3337-3344.	11.3	32
212	Phase-transfer catalyst separation and re-use by solvent resistant nanofiltration membranes. Chemical Communications, 2001, , 1468-1469.	4.1	29
213	Wet Air Oxidation of Linear Alkylbenzene Sulfonate 1. Effect of Temperature and Pressure. Industrial & Engineering Chemistry Research, 2001, 40, 5507-5516.	3.7	38
214	Wet Air Oxidation of Linear Alkylbenzene Sulfonate 2. Effect of pH. Industrial & Engineering Chemistry Research, 2001, 40, 5517-5525.	3.7	26
215	Pervaporation mass transfer with liquid flow in the transition regime. Journal of Membrane Science, 2001, 183, 119-133.	8.2	26
216	Membrane aromatic recovery system (MARS) — a new membrane process for the recovery of phenols from wastewaters. Journal of Membrane Science, 2001, 188, 219-233.	8.2	62

#	Article	IF	CITATIONS
217	Experimental observations of nanofiltration with organic solvents. Journal of Membrane Science, 2001, 190, 45-55.	8.2	194
218	Semi-continuous nanofiltration-coupled Heck reactions as a new approach to improve productivity of homogeneous catalysts. Tetrahedron Letters, 2001, 42, 8219-8222.	1.4	102
219	Treatment of metal-containing wastewaters with a novel extractive membrane reactor using sulfate-reducing bacteria. Journal of Chemical Technology and Biotechnology, 2001, 76, 61-68.	3.2	34
220	Microbial sulfate reduction in a liquid-solid fluidized bed reactor. Biotechnology and Bioengineering, 2000, 70, 370-380.	3.3	97
221	Ethanol utilization by sulfate-reducing bacteria: An experimental and modeling study. Biotechnology and Bioengineering, 2000, 70, 533-543.	3.3	112
222	Development of an extractive membrane bioreactor for degradation of 3 chloro-4-methylaniline: From lab bench to pilot scale. Environmental Progress, 2000, 19, 18-27.	0.7	16
223	Modelling and analysis of membraneâ€attached biofilms. Canadian Journal of Chemical Engineering, 2000, 78, 371-381.	1.7	1
224	Beneficial combination of wet oxidation, membrane separation and biodegradation processes for treatment of polymer processing wastewaters. Canadian Journal of Chemical Engineering, 2000, 78, 418-422.	1.7	9
225	Substrate counterdiffusion and reaction in membrane-attached biofilms: mathematical analysis of rate limiting mechanisms. Chemical Engineering Science, 2000, 55, 1385-1398.	3.8	40
226	Assessment of partial treatment of polyethylene glycol wastewaters by wet air oxidation. Water Research, 2000, 34, 1620-1628.	11.3	24
227	Wet Air Oxidation of Aqueous Solutions of Linear Alkylbenzene Sulfonates. Industrial & Engineering Chemistry Research, 2000, 39, 3659-3665.	3.7	13
228	Microbial sulfate reduction in a liquid–solid fluidized bed reactor. Biotechnology and Bioengineering, 2000, 70, 370-380.	3.3	1
229	Mass transfer of hydrophobic solutes in solvent swollen silicone rubber membranes. Journal of Membrane Science, 1999, 154, 127-140.	8.2	42
230	Effect of ionic strength on extraction of hydrophobic organics through silicone rubber membranes. Journal of Membrane Science, 1999, 162, 57-72.	8.2	16
231	Wastewater treatment: wet air oxidation as a precursor to biological treatment. Catalysis Today, 1999, 53, 93-106.	4.4	68
232	A novel method for characterisation of microbial growth kinetics on volatile organic compounds. Applied Microbiology and Biotechnology, 1999, 52, 174-178.	3.6	23
233	Optimal design of solvent blends for environmental impact minimization. AICHE Journal, 1999, 45, 817-843.	3.6	92
234	Steady state behaviour of three phase air lift bioreactors - an integrated model and experimental verification. Journal of Chemical Technology and Biotechnology, 1999, 74, 551-561.	3.2	11

#	Article	IF	CITATIONS
235	Degradation of Chloronitrobenzenes by a Coculture of Pseudomonas putida and a Rhodococcus sp. Applied and Environmental Microbiology, 1999, 65, 1083-1091.	3.1	79
236	A membrane bioreactor for biotransformations of hydrophobic molecules. , 1998, 58, 587-594.		46
237	Anaerobic dechlorination of perchloroethene in an extractive membrane bioreactor. Applied Microbiology and Biotechnology, 1998, 50, 303-308.	3.6	13
238	Use of Specific ATP Concentration and Specific Oxygen Uptake Rate to Determine Parameters of a Structured Model of Biomass Growth. Enzyme and Microbial Technology, 1998, 22, 500-510.	3.2	20
239	Extractive membrane bioreactors for detoxification of chemical industry wastes: process development. Journal of Membrane Science, 1998, 151, 29-44.	8.2	64
240	Integration of Wet Oxidation and Nanofiltration for Treatment of Recalcitrant Organics in Wastewater. Industrial & amp; Engineering Chemistry Research, 1997, 36, 5054-5062.	3.7	37
241	Mineralisation of 1,2-dibromoethane and other brominated aliphatics under aerobic conditions. Water Science and Technology, 1997, 36, 17-25.	2.5	2
242	Reaction mechanisms and kinetics of chemical pretreatment of bioresistant organic molecules by wet air oxidation. Water Science and Technology, 1997, 35, 119.	2.5	25
243	Wet oxidation as a pretreatment method for wastewaters contaminated by bioresistant organics. Water Science and Technology, 1997, 36, 109.	2.5	12
244	Mineralisation of 1,2-dibromoethane and other brominated aliphatics under aerobic conditions. Water Science and Technology, 1997, 36, 17.	2.5	1
245	The effect of membrane module configuration on extraction efficiency in an extractive membrane bioreactor. Journal of Membrane Science, 1997, 128, 231-242.	8.2	18
246	Prediction of axial concentration profiles in an extractive membrane bioreactor and experimental verification. Journal of Membrane Science, 1997, 130, 85-98.	8.2	14
247	Environmental impact considerations in the optimal design and scheduling of batch processes. Computers and Chemical Engineering, 1997, 21, 1073-1094.	3.8	89
248	Integrated Wet Air Oxidation and Biological Treatment of Polyethylene Glycol-Containing Wastewaters. Journal of Chemical Technology and Biotechnology, 1997, 70, 147-156.	3.2	35
249	Integrated Wet Air Oxidation and Biological Treatment of Polyethylene Glycol ontaining Wastewaters. Journal of Chemical Technology and Biotechnology, 1997, 70, 147-156.	3.2	1
250	Partial wet oxidation of p-coumaric acid: Oxidation intermediates, reaction pathways and implications for wastewater treatment. Water Research, 1996, 30, 2969-2976.	11.3	47
251	Growth of immobilised cells: Results and predictions for membrane-attached biofilms using a novel in situ biofilm thickness measurement technique. Progress in Biotechnology, 1996, , 290-297.	0.2	1
252	Viability of Immobilised Cells: Use of Specific ATP levels and Oxygen Uptake Rates. Progress in Biotechnology, 1996, , 264-271.	0.2	2

#	Article	IF	CITATIONS
253	Detoxification of industrial wastewaters in an extractive membrane bioreactor. Water Science and Technology, 1996, 33, 1.	2.5	15
254	Minimisation of biomass in an extractive membrane bioreactor. Water Science and Technology, 1996, 34, 273.	2.5	10
255	Catalytic wet oxidation of p-coumaric acid: Partial oxidation intermediates, reaction pathways and catalyst leaching. Applied Catalysis B: Environmental, 1996, 7, 379-396.	20.2	120
256	Catalytic wet air oxidation of polyethylene glycol. Applied Catalysis B: Environmental, 1996, 11, 99-119.	20.2	43
257	Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment. Chemical Engineering Science, 1996, 51, 4219-4235.	3.8	66
258	Dichloroethane Removal from Gas Streams by an Extractive Membrane Bioreactor. Biotechnology Progress, 1995, 11, 194-201.	2.6	34
259	Instability phenomenon in an external-loop three-phase gas-liquid airlift reactor. AICHE Journal, 1995, 41, 2508-2511.	3.6	5
260	Membrane-attached biofilms for VOC wastewater treatment I: Novel in situ biofilm thickness measurement technique. Biotechnology and Bioengineering, 1995, 47, 82-89.	3.3	56
261	Membrane-attached biofilms for VOC wastewater treatment. II: Effect of biofilm thickness on performance. Biotechnology and Bioengineering, 1995, 47, 90-95.	3.3	48
262	Aqueous-aqueous extraction of organic pollutants through tubular silicone rubber membranes. Journal of Membrane Science, 1995, 104, 119-137.	8.2	106
263	Minimizing the environmental impact of process Plants: A process systems methodology. Computers and Chemical Engineering, 1995, 19, 39-44.	3.8	54
264	Novel membrane bioreactor for detoxification of VOC wastewaters: Biodegradation of 1,2-dichloroethane. Water Research, 1995, 29, 179-194.	11.3	61
265	Hydrodynamics of an external-loop three-phase airlift (TPAL) reactor. Chemical Engineering Science, 1994, 49, 3719-3737.	3.8	24
266	Biotreatment of a point-source industrial wastewater arising in 3,4-dichloroaniline manufacture using an extractive membrane bioreactor. Biotechnology Progress, 1994, 10, 65-75.	2.6	31
267	Extraction and biodegradation of a toxic volatile organic compound (1,2-dichloroethane) from waste-water in a membrane bioreactor. Applied Microbiology and Biotechnology, 1994, 42, 421-431.	3.6	30
268	Biological detoxification of a 3-chloronitrobenzene manufacture wastewater in an extractive membrane bioreactor. Water Research, 1994, 28, 1347-1354.	11.3	39
269	Extractive membrane bioreactors: A new process technology for detoxifying chemical industry wastewaters. Journal of Chemical Technology and Biotechnology, 1994, 60, 117-124.	3.2	67
270	Mass transfer in liquid—solid fluidized beds of ion exchange resins at low Reynolds numbers. Chemical Engineering Science, 1993, 48, 1174-1178.	3.8	12

#	Article	IF	CITATIONS
271	A novel membrane bioreactor for detoxifying industrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnology and Bioengineering, 1993, 41, 915-926.	3.3	117
272	A novel membrane bioreactor for detoxifying industrial wastewater: II. Biodegradation of 3-chloronitrobenzene in an industrially produced wastewater. Biotechnology and Bioengineering, 1993, 41, 927-936.	3.3	82
273	Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors. Biotechnology and Bioengineering, 1993, 42, 1337-1351.	3.3	53
274	Point source detoxification of an industrially produced 3,4-dichloroaniline-manufacture wastewater using a membrane bioreactor. Applied Microbiology and Biotechnology, 1993, 39, 764-771.	3.6	24
275	Hydrodynamic behaviour of three-phase (gas—liquid—solid) airlift reactors. Chemical Engineering Science, 1993, 48, 1641-1654.	3.8	81
276	Development of a phenol degrading fluidized bed bioreactor for constant biomass holdup. The Chemical Engineering Journal, 1991, 45, B57-B66.	0.3	30
277	Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm Kinetic model. Biotechnology and Bioengineering, 1991, 38, 260-272.	3.3	69
278	Degradation of 3,4-dichloroaniline in synthetic and industrially produced wastewaters by mixed cultures freely suspended and immobilized in a packed-bed reactor. Applied Microbiology and Biotechnology, 1991, 35, 551-7.	3.6	30
279	LIQUID-SOLID MASS TRANSFER IN A THREE PHASE DRAFT TUBE FLUIDIZED BED REACTOR. Chemical Engineering Communications, 1990, 92, 225-244.	2.6	11
280	Modeling phenol degradation in a fluidized-bed bioreactor. AICHE Journal, 1989, 35, 1980-1992.	3.6	106
281	Preparation and characterization of adsorbents for use in high-performance liquid affinity chromatography. Journal of Chromatography A, 1989, 481, 159-174.	3.7	28