Daniel R. Neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6181733/publications.pdf

Version: 2024-02-01

46 papers

4,952 citations 304743 22 h-index 330143 37 g-index

49 all docs

49 docs citations

49 times ranked

7461 citing authors

#	Article	IF	CITATIONS
1	Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature, 2010, 464, 1367-1370.	27.8	1,970
2	Transcription factor RORα is critical for nuocyte development. Nature Immunology, 2012, 13, 229-236.	14.5	530
3	IL-33 is more potent than IL-25 in provoking IL-13–producing nuocytes (type 2 innate lymphoid cells) and airway contraction. Journal of Allergy and Clinical Immunology, 2013, 132, 933-941.	2.9	331
4	Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of TLR4. PLoS Pathogens, 2010, 6, e1001191.	4.7	314
5	Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nature Biotechnology, 2015, 33, 81-88.	17.5	187
6	Controlled Human Infection and Rechallenge with <i>Streptococcus pneumoniae</i> Reveals the Protective Efficacy of Carriage in Healthy Adults. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 855-864.	5.6	166
7	Phage therapy is highly effective against chronic lung infections with <i>Pseudomonas aeruginosa </i> Thorax, 2017, 72, 666-667.	5.6	161
8	Blocking IL-25 signalling protects against gut inflammation in a type-2 model of colitis by suppressing nuocyte and NKT derived IL-13. Journal of Gastroenterology, 2012, 47, 1198-1211.	5.1	112
9	Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection. PLoS Pathogens, 2015, 11, e1004836.	4.7	109
10	Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nature Microbiology, 2019, 4, 996-1005.	13.3	106
11	E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. European Respiratory Journal, 2018, 51, 1701592.	6.7	104
12	T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice. PLoS Pathogens, 2012, 8, e1002660.	4.7	98
13	The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 665759.	3.9	87
14	Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nature Communications, 2014, 5, 4780.	12.8	82
15	Pneumolysin binds to the mannose receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival. Nature Microbiology, 2019, 4, 62-70.	13.3	77
16	Nuocytes and beyond: new insights into helminth expulsion. Trends in Parasitology, 2011, 27, 214-221.	3.3	59
17	Airborne dust and high temperatures are risk factors for invasive bacterial disease. Journal of Allergy and Clinical Immunology, 2017, 139, 977-986.e2.	2.9	59
18	Ca2+-dependent repair of pneumolysin pores: A new paradigm for host cellular defense against bacterial pore-forming toxins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2045-2054.	4.1	56

#	Article	IF	CITATIONS
19	Density and Duration of Pneumococcal Carriage Is Maintained by Transforming Growth Factor \hat{l}^21 and T Regulatory Cells. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1250-1259.	5.6	55
20	A new protective role for \$100A9 in regulation of neutrophil recruitment during invasive pneumococcal pneumonia. FASEB Journal, 2014, 28, 3600-3608.	0.5	48
21	Exposure to diesel exhaust particles increases susceptibility to invasive pneumococcal disease. Journal of Allergy and Clinical Immunology, 2020, 145, 1272-1284.e6.	2.9	29
22	Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nature Communications, 2018, 9, 2635.	12.8	28
23	Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. Nature Communications, 2020, 11 , 1892 .	12.8	28
24	Antibacterial Activity of Inverse Vulcanized Polymers. Biomacromolecules, 2021, 22, 5223-5233.	5.4	21
25	The Pneumococcal Polysaccharide Capsule and Pneumolysin Differentially Affect CXCL8 and IL-6 Release from Cells of the Upper and Lower Respiratory Tract. PLoS ONE, 2014, 9, e92355.	2.5	20
26	Origins and evolution of innate lymphoid cells: Wardens of barrier immunity. Parasite Immunology, 2018, 40, e12436.	1.5	20
27	T _H 9: the latest addition to the expanding repertoire of ILâ€25 targets. Immunology and Cell Biology, 2010, 88, 502-504.	2.3	17
28	Structural insights into loss of function of a pore forming toxin and its role in pneumococcal adaptation to an intracellular lifestyle. PLoS Pathogens, 2020, 16, e1009016.	4.7	13
29	The B Lymphocyte Differentiation Factor (BAFF) Is Expressed in the Airways of Children with CF and in Lungs of Mice Infected with Pseudomonas aeruginosa. PLoS ONE, 2014, 9, e95892.	2.5	11
30	Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models. Molecular Biology and Evolution, 2021, 38, 2209-2226.	8.9	9
31	Novel Immunogenic Peptides Elicit Systemic Anaphylaxis in Mice: Implications for Peptide Vaccines. Journal of Immunology, 2011, 187, 1201-1206.	0.8	7
32	Investigating the viability of sulfur polymers for the fabrication of photoactive, antimicrobial, water repellent coatings. Journal of Materials Chemistry B, 2022, 10, 4153-4162.	5.8	7
33	Nasopharyngeal carriage with Streptococcus pneumoniae augments the immunizing effect of pneumolysin toxoid B. Journal of Allergy and Clinical Immunology, 2013, 131, 1433-1435.e1.	2.9	6
34	Intestinal helminth co-infection is an unrecognised risk factor for increased pneumococcal carriage density and invasive disease. Scientific Reports, 2021, 11, 6984.	3.3	6
35	Innate lymphoid cells and parasites: Ancient foes with shared history. Parasite Immunology, 2018, 40, e12513.	1.5	5
36	Influenza-like illness is associated with high pneumococcal carriage density in Malawian children. Journal of Infection, 2020, 81, 549-556.	3.3	5

#	Article	IF	CITATIONS
37	Pneumolysin., 2015, , 257-275.		4
38	Lower Density and Shorter Duration of Nasopharyngeal Carriage by Pneumococcal Serotype 1 (ST217) May Explain Its Increased Invasiveness over Other Serotypes. MBio, 2020, 11 , .	4.1	4
39	Spir2; a novel QTL on chromosome 4 contributes to susceptibility to pneumococcal infection in mice. BMC Genomics, 2013, 14, 242.	2.8	0
40	Pneumococcal Biology, Diversity, Evolution and Host Responses to Infection., 2016,, 60-65.		0
41	Title is missing!. , 2020, 16, e1009016.		0
42	Title is missing!. , 2020, 16, e1009016.		0
43	Title is missing!. , 2020, 16, e1009016.		0
44	Title is missing!. , 2020, 16, e1009016.		0
45	Title is missing!. , 2020, 16, e1009016.		0
46	Transcriptional profiles of Streptococcus pneumoniae associated with adaptation to the nasopharynx environment. Access Microbiology, 2022, 4, .	0.5	0