Matthias Schmelz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6181383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic background field-tolerant SQIF-based current sensors. Superconductor Science and Technology, 2021, 34, 045015.	3.5	3
2	Long baseline LTS SQUID gradiometers with sub- <i>μ</i> m sized Josephson junctions. Superconductor Science and Technology, 2020, 33, 055002.	3.5	11
3	Numerical analysis of a folded superconducting coaxial shield for cryogenic current comparators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922, 134-142.	1.6	3
4	Coreless SQUID-based cryogenic current comparator for non-destructive intensity diagnostics of charged particle beams. Superconductor Science and Technology, 2019, 32, 014002.	3.5	3
5	Development of SQUID Amplifiers for Axion Search Experiments. , 2019, , .		1
6	Underwater operation of a full tensor SQUID gradiometer system. Superconductor Science and Technology, 2019, 32, 024003.	3.5	11
7	SQUID amplifiers for axion search experiments. Cryogenics, 2018, 91, 125-127.	1.7	10
8	Flux trapping in multi-loop SQUIDs and its impact on SQUID-based absolute magnetometry. Superconductor Science and Technology, 2018, 31, 035001.	3.5	2
9	Performance Optimization of a Three-Dimensional NanoSQUID Based on Niobium Tunnel Nanojunctions. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	0
10	Cryogenic Current Comparators for Larger Beamlines. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	4
11	Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition. Superconductor Science and Technology, 2017, 30, 035010.	3.5	27
12	Detection of Weak Microwave Fields with an Underdamped Josephson Junction. Physical Review Applied, 2017, 7, .	3.8	44
13	Chemical–Mechanically Planarized Cross-Type Josephson Junctions in Nb-Al-AlOx-Nb Technology. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	1
14	A new family of field-stable and highly sensitive SQUID current sensors based on sub-micrometer cross-type Josephson junctions. Superconductor Science and Technology, 2017, 30, 074010.	3.5	11
15	Absolute calibration of a three-axis SQUID-cascade vector magnetometer. Measurement Science and Technology, 2017, 28, 015107.	2.6	3
16	3D nanoSQUID based on tunnel nano-junctions with an energy sensitivity of 1.3 <i>h</i> at 4.2 K. Applied Physics Letters, 2017, 111, .	3.3	15
17	Nearly quantum limited nanoSQUIDs based on cross-type Nb/AlO <i>_x</i> /Nb junctions. Superconductor Science and Technology, 2017, 30, 014001.	3.5	15
18	Superconducting Quantum Interference Device (SQUID) Magnetometers. Smart Sensors, Measurement and Instrumentation, 2017, , 279-311.	0.6	3

MATTHIAS SCHMELZ

#	Article	IF	CITATIONS
19	Thin-Film-Based Ultralow Noise SQUID Magnetometer. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	28
20	SQUID Systems for Geophysical Time Domain Electromagnetics (TEM) at IPHT Jena. IEICE Transactions on Electronics, 2015, E98.C, 167-173.	0.6	22
21	A three-axis SQUID-based absolute vector magnetometer. Review of Scientific Instruments, 2015, 86, 105002.	1.3	13
22	Investigation of all niobium nano-SQUIDs based on sub-micrometer cross-type Josephson junctions. Superconductor Science and Technology, 2015, 28, 015004.	3.5	25
23	Analysis of a dc SQUID readout scheme with voltage feedback circuit and low-noise preamplifier. Superconductor Science and Technology, 2014, 27, 085011.	3.5	6
24	Single-electron transitions in one-dimensional native nanostructures. Journal of Physics: Conference Series, 2014, 568, 052024.	0.4	5
25	Noise characterization of highly sensitive SQUID magnetometer systems in unshielded environments. Superconductor Science and Technology, 2013, 26, 035017.	3.5	28
26	Removal of step-edges and corresponding Gibbs ringing in SQUID-based geomagnetic data. Measurement Science and Technology, 2013, 24, 125004.	2.6	6
27	SQUID-based setup for the absolute measurement of the Earth's magnetic field. Superconductor Science and Technology, 2013, 26, 035013.	3.5	22
28	SQIF-based dc SQUID amplifier with intrinsic negative feedback. Superconductor Science and Technology, 2012, 25, 015005.	3.5	5
29	Planar SQUID magnetometer integrated with bootstrap circuitry under different bias modes. Superconductor Science and Technology, 2012, 25, 125007.	3.5	13
30	Femtoammeter on the base of SQUID with thin-film flux transformer. Superconductor Science and Technology, 2012, 25, 095014.	3.5	19
31	Sub-fT/Hz1/2 resolution and field-stable SQUID magnetometer based on low parasitic capacitance sub-micrometer cross-type Josephson tunnel junctions. Physica C: Superconductivity and Its Applications, 2012, 482, 27-32.	1.2	19
32	Bi-SQUIDs with submicron cross-type Josephson tunnel junctions. Superconductor Science and Technology, 2012, 25, 045001.	3.5	16
33	Highly sensitive miniature SQUID magnetometer fabricated with cross-type Josephson tunnel junctions. Physica C: Superconductivity and Its Applications, 2012, 476, 77-80.	1.2	15
34	Low temperature SQUID magnetometer systems for geophysical exploration with transient electromagnetics. Superconductor Science and Technology, 2011, 24, 125006.	3.5	25
35	SQUIDs based on submicrometer-sized Josephson tunnel junctions fabricated in a cross-type technology. Superconductor Science and Technology, 2011, 24, 015005.	3.5	16
36	Field-stable SQUID magnetometer with sub-fT Hz < sup > â^ 1/2 < /sup > resolution based on sub-micrometer cross-type Josephson tunnel junctions. Superconductor Science and Technology, 2011, 24, 065009.	3.5	52

#	Article	IF	CITATIONS
37	Sub-micrometer-sized, cross-type Nb–AlOx–Nb tunnel junctions with low parasitic capacitance. Superconductor Science and Technology, 2009, 22, 064012.	3.5	46
38	Superconducting sensors and methods in geophysical applications. Superconductor Science and Technology, 0, , .	3.5	22