
Vittorio Cristini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6180614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: a randomised, open-label, phase 2 trial. The Lancet Gastroenterology and Hepatology, 2022, 7, 208-218.	8.1	105
2	Diffusionâ€induced anisotropic cancer invasion: A novel experimental method based on tumor spheroids. AICHE Journal, 2022, 68, .	3.6	4
3	Translational Modeling Identifies Synergy between Nanoparticle-Delivered miRNA-22 and Standard-of-Care Drugs in Triple-Negative Breast Cancer. Pharmaceutical Research, 2022, 39, 511-528.	3.5	12
4	Genetic and Structural Analysis of SARS-CoV-2 Spike Protein for Universal Epitope Selection. Molecular Biology and Evolution, 2022, 39, .	8.9	7
5	Dedifferentiation-mediated stem cell niche maintenance in early-stage ductal carcinoma in situ progression: insights from a multiscale modeling study. Cell Death and Disease, 2022, 13, .	6.3	5
6	Resolving the Disproportionate Left Ventricular Enlargement in Mitral Valve Prolapse Due to Barlow Disease. JACC: Cardiovascular Imaging, 2021, 14, 573-584.	5.3	25
7	A Mathematical Model to Estimate Chemotherapy Concentration at the Tumor-Site and Predict Therapy Response in Colorectal Cancer Patients with Liver Metastases. Cancers, 2021, 13, 444.	3.7	14
8	Amphibian regeneration and mammalian cancer: Similarities and contrasts from an evolutionary biology perspective. BioEssays, 2021, 43, e2000339.	2.5	5
9	ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer. Molecular Therapy - Nucleic Acids, 2021, 23, 930-943.	5.1	26
10	Targeted phage display-based pulmonary vaccination in mice and non-human primates. Med, 2021, 2, 321-342.e8.	4.4	18
11	Is the worst of the COVID-19 global pandemic yet to come? Application of financial mathematics as candidate predictive tools. Translational Psychiatry, 2021, 11, 299.	4.8	6
12	Conversion of RNA Aptamer into Modified DNA Aptamers Provides for Prolonged Stability and Enhanced Antitumor Activity. Journal of the American Chemical Society, 2021, 143, 7655-7670.	13.7	34
13	Targeting a cell surface vitamin D receptor on tumor-associated macrophages in triple-negative breast cancer. ELife, 2021, 10, .	6.0	18
14	Current Landscape and Future Directions of Biomarkers for Immunotherapy in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 1195-1207.	3.7	19
15	A mathematical model for the quantification of a patient's sensitivity to checkpoint inhibitors and long-term tumour burden. Nature Biomedical Engineering, 2021, 5, 297-308.	22.5	28
16	Innate Immunity Plays a Key Role in Controlling Viral Load in COVID-19: Mechanistic Insights from a Whole-Body Infection Dynamics Model. ACS Pharmacology and Translational Science, 2021, 4, 248-265.	4.9	36
17	Emerging Lipid-Coated Silica Nanoparticles for Cancer Therapy. Nanotechnology in the Life Sciences, 2021, , 335-361.	0.6	4
18	Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. ELife, 2021, 10, .	6.0	8

VITTORIO CRISTINI

#	Article	IF	CITATIONS
19	A Multiscale Model to Identify Limiting Factors in Nanoparticle-Based miRNA Delivery for Tumor Inhibition. , 2021, 2021, 4230-4233.		3
20	A Multiscale Agent-Based Model of Ductal Carcinoma <i>In Situ</i> . IEEE Transactions on Biomedical Engineering, 2020, 67, 1450-1461.	4.2	16
21	Imaging-Based Subtypes of Pancreatic Ductal Adenocarcinoma Exhibit Differential Growth and Metabolic Patterns in the Pre-Diagnostic Period: Implications for Early Detection. Frontiers in Oncology, 2020, 10, 596931.	2.8	10
22	Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. Nanoscale, 2020, 12, 23838-23850.	5.6	38
23	Mathematical prediction of clinical outcomes in advanced cancer patients treated with checkpoint inhibitor immunotherapy. Science Advances, 2020, 6, eaay6298.	10.3	41
24	A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery. Computational and Structural Biotechnology Journal, 2020, 18, 518-531.	4.1	61
25	Sequential deconstruction of composite drug transport in metastatic breast cancer. Science Advances, 2020, 6, eaba4498.	10.3	17
26	Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer. Gut, 2020, 69, 1818-1831.	12.1	80
27	Imageâ€guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1628.	6.1	24
28	Mathematical Modeling to Address Challenges in Pancreatic Cancer. Current Topics in Medicinal Chemistry, 2020, 20, 367-376.	2.1	16
29	Sizeâ€Optimized Ultrasmall Porous Silica Nanoparticles Depict Vasculatureâ€Based Differential Targeting in Triple Negative Breast Cancer. Small, 2019, 15, e1903747.	10.0	39
30	Development of a Physiologically-Based Mathematical Model for Quantifying Nanoparticle Distribution in Tumors. , 2019, 2019, 2852-2855.		1
31	Mathematical modeling in cancer nanomedicine: a review. Biomedical Microdevices, 2019, 21, 40.	2.8	122
32	Tumor core biopsies adequately represent immune microenvironment of high-grade serous carcinoma. Scientific Reports, 2019, 9, 17589.	3.3	12
33	Predicting breast cancer response to neoadjuvant chemotherapy based on tumor vascular features in needle biopsies. JCI Insight, 2019, 4, .	5.0	17
34	Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nature Communications, 2018, 9, 4551.	12.8	189
35	Understanding the Connection between Nanoparticle Uptake and Cancer Treatment Efficacy using Mathematical Modeling. Scientific Reports, 2018, 8, 7538.	3.3	49
36	A Visually Apparent and Quantifiable CT Imaging Feature Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2018, 24, 5883-5894.	7.0	76

VITTORIO CRISTINI

#	Article	IF	CITATIONS
37	Theory and Experimental Validation of a Spatio-temporal Model of Chemotherapy Transport to Enhance Tumor Cell Kill. PLoS Computational Biology, 2016, 12, e1004969.	3.2	55
38	A hybrid agent-based model of the developing mammary terminal end bud. Journal of Theoretical Biology, 2016, 407, 259-270.	1.7	10
39	Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1877-1882.	7.1	55
40	A Geometrically-Constrained Mathematical Model of Mammary Gland Ductal Elongation Reveals Novel Cellular Dynamics within the Terminal End Bud. PLoS Computational Biology, 2016, 12, e1004839.	3.2	47
41	Integrated PK-PD and agent-based modeling in oncology. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 179-189.	1.8	55
42	Simulating cancer growth with multiscale agent-based modeling. Seminars in Cancer Biology, 2015, 30, 70-78.	9.6	183
43	Predictive Modeling of Drug Response in Non-Hodgkin's Lymphoma. PLoS ONE, 2015, 10, e0129433.	2.5	24
44	Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer. Physical Biology, 2014, 11, 065002.	1.8	32
45	Understanding Drug Resistance in Breast Cancer with Mathematical Oncology. Current Breast Cancer Reports, 2014, 6, 110-120.	1.0	38
46	The effect of interstitial pressure on therapeutic agent transport: Coupling with the tumor blood and lymphatic vascular systems. Journal of Theoretical Biology, 2014, 355, 194-207.	1.7	91
47	Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1487-1496.	3.3	58
48	Transport properties of pancreatic cancer describe gemcitabine delivery and response. Journal of Clinical Investigation, 2014, 124, 1525-1536.	8.2	164
49	Development of a samplingâ€based global sensitivity analysis workflow for multiscale computational cancer models. IET Systems Biology, 2014, 8, 191-197.	1.5	27
50	Computational Modeling of 3D Tumor Growth and Angiogenesis for Chemotherapy Evaluation. PLoS ONE, 2014, 9, e83962.	2.5	70
51	Mechanistic Modeling Identifies Drug-Uptake History as Predictor of Tumor Drug Resistance and Nano-Carrier-Mediated Response. ACS Nano, 2013, 7, 11174-11182.	14.6	63
52	Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14266-14271.	7.1	65
53	A Computational Model for Predicting Nanoparticle Accumulation in Tumor Vasculature. PLoS ONE, 2013, 8, e56876.	2.5	88
54	Impact of Diffusion Barriers to Small Cytotoxic Molecules on the Efficacy of Immunotherapy in Breast Cancer. PLoS ONE, 2013, 8, e61398.	2.5	29

VITTORIO CRISTINI

#	Article	IF	CITATIONS
55	Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Advances, 2012, 2, 11208.	1.3	84
56	Multiscale Cancer Modeling. Annual Review of Biomedical Engineering, 2011, 13, 127-155.	12.3	353
57	A Novel, Patient-Specific Mathematical Pathology Approach for Assessment of Surgical Volume: Application to Ductal Carcinoma <i>in situ</i> of The Breast. Analytical Cellular Pathology, 2011, 34, 247-263.	1.4	39
58	A novel, patient-specific mathematical pathology approach for assessment of surgical volume: application to ductal carcinoma in situ of the breast. Analytical Cellular Pathology, 2011, 34, 247-63.	1.4	40
59	An Introduction to Physical Oncology. , 0, , .		39