Anne J Novak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6178044/publications.pdf

Version: 2024-02-01

147801 88630 5,308 124 31 70 citations h-index g-index papers 125 125 125 8651 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phenotype, Function, and Clinical Significance of CD26+ and CD161+Tregs in Splenic Marginal Zone Lymphoma. Clinical Cancer Research, 2022, 28, 4322-4335.	7.0	2
2	Causes of death in low-grade B-cell lymphomas in the rituximab era: a prospective cohort study. Blood Advances, 2022, 6, 5210-5221.	5.2	2
3	Targeting of inflammatory pathways with R2CHOP in high-risk DLBCL. Leukemia, 2021, 35, 522-533.	7.2	28
4	Treatment facility volume and patient outcomes in Waldenstrom macroglobulinemia. Leukemia and Lymphoma, 2021, 62, 308-315.	1.3	3
5	Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis. IScience, 2021, 24, 101994.	4.1	4
6	Lack of intrafollicular memory CD4 + T cells is predictive of early clinical failure in newly diagnosed follicular lymphoma. Blood Cancer Journal, 2021, 11, 130.	6.2	27
7	Expression of KLRG1 and CD127 defines distinct CD8 ⁺ subsets that differentially impact patient outcome in follicular lymphoma., 2021, 9, e002662.		16
8	Follicular Lymphoma Tumor-Cell Transcriptional Programs Associate with Distinct Somatic Alterations and Tumor-Immune Microenvironments. Blood, 2021, 138, 1327-1327.	1.4	0
9	T-Cell Phenotype Varies in Distinct Tumor Microenvironments and CD57 + T FH Cells Are Associated with Disease Progression and Inferior Survival in Follicular Lymphoma. Blood, 2021, 138, 3522-3522.	1.4	O
10	Vaccination History and Risk of Lymphoma and Its Major Subtypes. Cancer Epidemiology Biomarkers and Prevention, 2021, , cebp.0383.2021.	2.5	1
11	Impact of Double Hit Lymphoma and Cell of Origin in the Risk of Central Nervous System Relapse in Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma. Blood, 2021, 138, 1439-1439.	1.4	O
12	Integration of Tumor Transcriptomic, Genomic, and Immune Profiles Reveals Distinct Populations of Low-Grade B-Cell Lymphomas with Poor Outcome. Blood, 2021, 138, 808-808.	1.4	0
13	Ibrutinib monotherapy outside of clinical trial setting in Waldenström macroglobulinaemia: practice patterns, toxicities and outcomes. British Journal of Haematology, 2020, 188, 394-403.	2.5	41
14	Impact of MYD88 ^{L265P} mutation status on histological transformation of Waldenström Macroglobulinemia. American Journal of Hematology, 2020, 95, 274-281.	4.1	33
15	Human Cancers Express TRAILshort, a Dominant Negative TRAIL Splice Variant, Which Impairs Immune Effector Cell Killing of Tumor Cells. Clinical Cancer Research, 2020, 26, 5759-5771.	7.0	5
16	Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients. Blood Cancer Journal, 2020, 10, 117.	6.2	18
17	Increased glutathione utilization augments tumor cell proliferation in Waldenstrom Macroglobulinemia. Redox Biology, 2020, 36, 101657.	9.0	12
18	TIGIT Expression Is Associated with T-cell Suppression and Exhaustion and Predicts Clinical Outcome and Anti–PD-1 Response in Follicular Lymphoma. Clinical Cancer Research, 2020, 26, 5217-5231.	7.0	67

#	Article	IF	CITATIONS
19	Prognostic relevance of CD4+ T-cells in the microenvironment of newly diagnosed follicular lymphoma (FL) patients is independent of the tumor gene expression profile Journal of Clinical Oncology, 2020, 38, 8052-8052.	1.6	1
20	Global Transcriptional States of Follicular Lymphoma B Cells Highlight Distinct Groups of Tumor Identity Associated with Somatic Alterations and Tumor Microenvironment. Blood, 2020, 136, 21-22.	1.4	0
21	Causes of Death in Non-Follicular Indolent B-Cell Lymphoma in the Rituximab Era. Blood, 2020, 136, 36-37.	1.4	0
22	High Dimensional Tissue-Based Spatial Analysis of the Tumor Microenvironment of Follicular Lymphoma Reveals Unique Immune Niches inside Malignant Follicles. Blood, 2020, 136, 17-18.	1.4	0
23	Genetic overlap between autoimmune diseases and nonâ€Hodgkin lymphoma subtypes. Genetic Epidemiology, 2019, 43, 844-863.	1.3	28
24	SIRPα expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma. Blood Cancer Journal, 2019, 9, 84.	6.2	35
25	Amplification of 9p24.1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma. Blood Cancer Journal, 2019, 9, 73.	6.2	37
26	The utility of prognostic indices, early events, and histological subtypes on predicting outcomes in nonâ€follicular indolent Bâ€cell lymphomas. American Journal of Hematology, 2019, 94, 658-666.	4.1	19
27	Mass Cytometry Analysis Reveals that Specific Intratumoral CD4+ T Cell Subsets Correlate with Patient Survival in Follicular Lymphoma. Cell Reports, 2019, 26, 2178-2193.e3.	6.4	57
28	Reverse signaling via PD-L1 supports malignant cell growth and survival in classical Hodgkin lymphoma. Blood Cancer Journal, 2019, 9, 22.	6.2	54
29	Intrafollicular CD4+ T-Cells As an Independent Predictor of Early Clinical Failure in Newly Diagnosed Follicular Lymphoma. Blood, 2019, 134, 121-121.	1.4	7
30	A Role for TNF- $\hat{l}\pm$ in Chronic Lymphocytic Leukemia Bone Marrow Hematopoietic Dysfunction. Blood, 2019, 134, 4276-4276.	1.4	0
31	Long Non-Coding RNA Expression in Waldenstrom Macroglobulinemia and IgM Monoclonal Gammopathy of Undetermined Significance. Blood, 2019, 134, 2774-2774.	1.4	0
32	Integration of Genetic, Transcriptomic, and Immune Profiles Reveals Genomically-Distinct Populations in Low-Grade Lymphomas. Blood, 2019, 134, 2764-2764.	1.4	0
33	Genomic Landscape Including Novel Mutational Drivers in Relapsed/Refractory Diffuse Large B Cell Lymphoma. Blood, 2019, 134, 919-919.	1.4	0
34	Clustering of Transcriptomic Signatures in Newly Diagnosed Diffuse Large B-Cell Lymphoma Identifies Two High-Risk Subgroups Which Increase in Prevalence at Relapse. Blood, 2019, 134, 923-923.	1.4	0
35	Immune Phenotyping of Cytotoxic T-Cells Reveals a Novel Population of TIM3 Expressing Cells That Lack PD1 and Are Associated with Good Outcomes in Marginal Zone Lymphoma. Blood, 2019, 134, 2790-2790.	1.4	0
36	Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nature Medicine, 2018, 24, 679-690.	30.7	1,224

#	Article	IF	CITATIONS
37	<i>MYD88</i> mutation status does not impact overall survival in Waldenström macroglobulinemia. American Journal of Hematology, 2018, 93, 187-194.	4.1	57
38	Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Advances, 2018, 2, 1985-1997.	5.2	39
39	Loss of TNFAIP3 enhances MYD88L265P-driven signaling in non-Hodgkin lymphoma. Blood Cancer Journal, 2018, 8, 97.	6.2	36
40	Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia. Nature Communications, 2018, 9, 4182.	12.8	15
41	Human Pegivirus infection and lymphoma risk and prognosis: a North American study. British Journal of Haematology, 2018, 182, 644-653.	2.5	20
42	Treatment Facility Volume and Outcomes in Waldenstrom Macroglobulinemia. Blood, 2018, 132, 622-622.	1.4	1
43	Depth of Response in Waldenstrom Macroglobulinemia. Blood, 2018, 132, 4141-4141.	1.4	2
44	Immune System Profiling of Waldenstrom Macroglobulinemia (WM) and Immunoglobulin M Monoclonal Gammopathy of Undetermined Significance (IgM MGUS) Using Mass Cytometry (CyTOF). Blood, 2018, 132, 4138-4138.	1.4	0
45	Impact of MYD88L265P mutation Status on Histological Transformation of Waldenstrom Macroglobulinemia. Blood, 2018, 132, 2884-2884.	1.4	1
46	<i>FCGR3A</i> / <i>2A</i> polymorphisms and diffuse large Bâ€ell lymphoma outcome treated with immunochemotherapy: a metaâ€analysis on 1134 patients from two prospective cohorts. Hematological Oncology, 2017, 35, 447-455.	1.7	9
47	Clinical, histopathological, and molecular features of mucosa-associated lymphoid tissue (MALT) lymphoma carrying the $t(X;14)$ (p11;q32)/GPR34-immunoglobulin heavy chain gene. Leukemia and Lymphoma, 2017, 58, 2247-2250.	1.3	5
48	Associations between elevated preâ€treatment serum cytokines and peripheral blood cellular markers of immunosuppression in patients with lymphoma. American Journal of Hematology, 2017, 92, 752-758.	4.1	23
49	First report of <i>MYD88</i> ^{L265P} somatic mutation in IgM-associated light chain amyloidosis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 42-43.	3.0	10
50	Cohort Profile: The Lymphoma Specialized Program of Research Excellence (SPORE) Molecular Epidemiology Resource (MER) Cohort Study. International Journal of Epidemiology, 2017, 46, 1753-1754i.	1.9	57
51	Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma. Lupus Science and Medicine, 2017, 4, e000187.	2.7	15
52	Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget, 2017, 8, 61425-61439.	1.8	146
53	First report of MYD88L265P somatic mutation in IgM-associated light-chain amyloidosis. Blood, 2016, 127, 2936-2938.	1.4	17
54	Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nature Communications, 2016, 7, 10933.	12.8	94

#	Article	IF	CITATIONS
55	Altered Expression of Immune Checkpoint Molecules Including Programmed Cell Death-1 (PD-1) and Its Ligands PD-L1/PD-L2 in Waldenstrom's Macroglobulinemia. Blood, 2016, 128, 1772-1772.	1.4	1
56	Similar Phenotypes Demonstrated upon Initial Diagnosis and at Time of Recurrence in Relapsed DLBCL. Blood, 2016, 128, 5299-5299.	1.4	1
57	Signal-Regulatory Protein-α (SIRP- α) Expression Delineates Distinct Subsets in Monocytes/Macrophages in Normal Tissue and in B-Cell Non-Hodgkin Lymphoma. Blood, 2016, 128, 2515-2515.	1.4	0
58	Whole-Exome Analysis Reveals Novel Somatic Genomic Alterations Associated with Cell of Origin in Diffuse Large B-Cell Lymphoma. Blood, 2016, 128, 2935-2935.	1.4	0
59	Isogenic Loss of TNFAIP3 in Waldenstrom Macroglobulinemia Enhances MYD88L265P-Driven Signaling. Blood, 2016, 128, 4100-4100.	1.4	0
60	A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nature Communications, 2015, 6, 5751.	12.8	58
61	Non-Hodgkin Lymphoma, Body Mass Index, and Cytokine Polymorphisms: A Pooled Analysis from the InterLymph Consortium. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1061-1070.	2.5	8
62	The Exhausted Intratumoral T Cell Population in B-Cell Non-Hodgkin Lymphoma Is Defined By LAG-3, PD-1 and tim-3 Expression. Blood, 2015, 126, 2661-2661.	1.4	7
63	Study of the Subclonal Mutations in Primary Diffuse Large B-Cell Lymphoma. Blood, 2015, 126, 131-131.	1.4	0
64	RVboost: RNA-seq variants prioritization using a boosting method. Bioinformatics, 2014, 30, 3414-3416.	4.1	34
65	Pattern of CD14+ Follicular Dendritic Cells and PD1+ T Cells Independently Predicts Time to Transformation in Follicular Lymphoma. Clinical Cancer Research, 2014, 20, 2862-2872.	7.0	86
66	B-cell activating factor-receptor specific activation of tumor necrosis factor receptor associated factor 6 and the phosphatidyl inositol 3-kinase pathway in lymphoma B cells. Leukemia and Lymphoma, 2014, 55, 1884-1892.	1.3	6
67	Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nature Genetics, 2014, 46, 1233-1238.	21.4	147
68	Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region. American Journal of Human Genetics, 2014, 95, 462-471.	6.2	96
69	PatternCNV: a versatile tool for detecting copy number changes from exome sequencing data. Bioinformatics, 2014, 30, 2678-2680.	4.1	43
70	An exhaustive algorithm for detecting copy number aberrations and large structural variants in whole-genome, mate-pair sequencing data Journal of Clinical Oncology, 2014, 32, e22171-e22171.	1.6	0
71	Presence and function of CD14+CD16-HLADRlow monocytes in the peripheral blood of patients with Î'-cell non-Hodgkin lymphoma (NHL) Journal of Clinical Oncology, 2014, 32, e19539-e19539.	1.6	0
72	Interactions Between PD-1 and PD-L1 and PD-L2 Promote Malignant B-Cell Growth in Waldenstrom Macroglobulinemia. Blood, 2013, 122, 4334-4334.	1.4	5

#	Article	IF	Citations
73	Whole-Exome Analysis Of DLBCL Tumors Reveals a Unique Genetic Signature Associated With Aggressive Disease. Blood, 2013, 122, 499-499.	1.4	2
74	A Genome-Wide Association Study (GWAS) Of Event-Free Survival In Diffuse Large B-Cell Lymphoma (DLBCL) Treated With Rituximab and Anthracycline-Based Chemotherapy: A Lysa and Iowa/Mayo Clinic SPORE Multistage Study. Blood, 2013, 122, 76-76.	1.4	1
75	Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3879-3884.	7.1	853
76	IL-21 in the bone marrow microenvironment contributes to IgM secretion and proliferation of malignant cells in Waldenstrom macroglobulinemia. Blood, 2012, 120, 3774-3782.	1.4	40
77	Elevated pretreatment serum levels of interferonâ€inducible proteinâ€10 (CXCL10) predict disease relapse and prognosis in diffuse large Bâ€cell lymphoma patients. American Journal of Hematology, 2012, 87, 865-869.	4.1	37
78	MYD88 Pathway Activation in Lymphoplasmacytic Lymphoma Drives Tumor Cell Growth and Cytokine Expression Blood, 2012, 120, 2699-2699.	1.4	3
79	Biologic Activity of STAT5A and STAT5B in Waldenstrom's Macroglobulinemia Blood, 2012, 120, 2688-2688.	1.4	0
80	Germline Genetic Variation and Risk of Follicular Lymphoma Transformation in the Modern Treatment Era. Blood, 2012, 120, 149-149.	1.4	0
81	Non-Follicular Low Grade B-Cell Lymphomas: Patterns of Presentation and Management with Comparative Prognostic Utility of IPI and FLIPI. Blood, 2012, 120, 1563-1563.	1.4	0
82	IL-21 and IL-6 Mediate Interactions Between T Cells and Malignant B Cells in the Bone Marrow Microenvironment in Waldenstrom's Macroglobulinemia. Blood, 2012, 120, 1554-1554.	1.4	0
83	CXCR5 Polymorphisms in Non-Hodgkin Lymphoma (NHL) Risk and Prognosis Blood, 2012, 120, 2702-2702.	1.4	0
84	Establishment and characterization of a novel Waldenstr $\tilde{A}\P$ m macroglobulinemia cell line, MWCL-1. Blood, 2011, 117, e190-e197.	1.4	40
85	Comprehensive analysis of tumor microenvironment cytokines in Waldenstrom macroglobulinemia identifies CCL5 as a novel modulator of IL-6 activity. Blood, 2011, 118, 5540-5549.	1.4	72
86	Dysregulation of GPR34 in Indolent Lymphomas and Its Function As a Novel Regulator of Cell Growth and Gene Expression. Blood, 2011, 118, 1570-1570.	1.4	15
87	TGF-Î ² Is Selectively Expressed on Lymphoma B Cells and Regulates the Differentiation of Intratumoral T Cells in B-Cell Non-Hodgkin Lymphoma (NHL). Blood, 2011, 118, 1586-1586.	1.4	1
88	Pretreatment Serum Cytokines Predict Early Disease Relapse and A Poor Prognosis In Newly Diagnosed Classical Hodgkin Lymphoma (cHL) Patients. Blood, 2011, 118, 429-429.	1.4	1
89	IL-21 in the Bone Marrow Microenvironment Contributes to IgM Secretion and Proliferation of Malignant Cells in Waldenstrom's Macroglobulinemia. Blood, 2011, 118, 770-770.	1.4	0
90	A Lymphoma-Associated Mutation in BAFF-R Drives Constitutive PI3K Signaling and Increased Expression of Pro-Survival Genes. Blood, 2011, 118, 2642-2642.	1.4	0

#	Article	IF	Citations
91	A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling. Journal of Experimental Medicine, 2010, 207, 2569-2579.	8.5	96
92	A Newly Identified Translocation $t(X;14)(p11;q32)$ In MALT Lymphoma Involving IGHS and GPR34 Reveals A Novel Role for GPR34 In Cell Growth and Tumor Development. Blood, 2010, 116, 1999-1999.	1.4	0
93	Pretreatment Serum Cytokines Predict Early Disease Relapse and a Poor Prognosis In Diffuse Large B-Cell Lymphoma (DLBCL) Patients. Blood, 2010, 116, 991-991.	1.4	1
94	A BAFF-R Mutation Associated with Non-Hodgkin Lymphoma Exhibits Altered TRAF Binding and Reveals New Insights Into Proximal BAFF-R Signaling. Blood, 2010, 116, 468-468.	1.4	0
95	Interactions with the Microenvironment Protect Lymphoma B-Cells From Rituximab Induced Apoptosis and Could Represent a Therapeutic Target. Blood, 2010, 116, 3115-3115.	1.4	0
96	A Novel IL-12-TIM-3 Pathway Induces T Cell Exhaustion and Predicts Reduced Survival In Patients with Follicular B-Cell Non-Hodgkin Lymphoma. Blood, 2010, 116, 143-143.	1.4	1
97	Genetic Variation in B-Cell–Activating Factor Is Associated with an Increased Risk of Developing B-Cell Non–Hodgkin Lymphoma. Cancer Research, 2009, 69, 4217-4224.	0.9	59
98	A proliferation-inducing ligand mediates follicular lymphoma B-cell proliferation and cyclin D1 expression through phosphatidylinositol 3-kinase–regulated mammalian target of rapamycin activation. Blood, 2009, 113, 5206-5216.	1.4	46
99	Interplay Between Histone Deacetylases (HDACs) and STAT3: Mechanism of Activated JAK/STAT3 Oncogenic Pathway in ABC (Activated B-cell) Type Diffuse Large B Cell Lymphoma Blood, 2009, 114, 925-925.	1.4	1
100	Germline Variation in Apoptosis Pathway Genes and Risk of Non-Hodgkin Lymphoma Blood, 2009, 114, 3933-3933.	1.4	1
101	Germline Variation in Complement Genes and Event-Free Survival in Follicular Lymphoma Blood, 2009, 114, 440-440.	1.4	4
102	Elevated Expression of GPR34 in Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma and Its Association with Increased Cell Growth, Erk Activation, and AP-1 and CRE-Mediated Transcription Blood, 2009, 114, 3927-3927.	1.4	1
103	Inhibition of the Jak/Stat Pathway Downregulates Immunoglobulin Production and Induces Cell Death in Waldenstrol^m Macroglobulinemia Blood, 2009, 114, 1691-1691.	1.4	1
104	Elevated Expression of GPR34 and Its Association with a Novel Translocation T(X;14)(p11;q32) Involving IGHS and GPR34 in MALT Lymphoma Blood, 2008, 112, 2251-2251.	1.4	3
105	Histone Deacetylase Inhibition with LBH589 Inhibits the Rapamycin Insensitive Rictor-mTOR (mTORC2) Complex and Translation Initiation Factor eIF4E Activation in Diffuse Large B-Cell Lymphoma. Blood, 2008, 112, 603-603.	1.4	4
106	CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25â° T cells. Blood, 2007, 110, 2537-2544.	1.4	181
107	Role of CCL5 and Interleukin-6 in the Biology of Waldenstrol^m Macroglobulinemia Blood, 2007, 110, 688-688.	1.4	2
108	APRIL-TACI Interactions Mediate Non-Hodgkin Lymphoma B Cell Proliferation through Akt Regulated Cyclin D1 and P21 Blood, 2007, 110, 3585-3585.	1.4	1

#	Article	IF	CITATIONS
109	Malignant B Cells Skew the Balance between Treg Cell and TH17 Cell Differentiation in B-Cell Non-Hodgkin Lymphoma (NHL) Blood, 2007, 110, 1347-1347.	1.4	0
110	Elevated Serum B-Lymphocyte Stimulator Levels in Patients With Familial Lymphoproliferative Disorders. Journal of Clinical Oncology, 2006, 24, 983-987.	1.6	85
111	Phase 1 Clinical Study of Atacicept in Patients with Relapsed and Refractory B-Cell Lymphoma Blood, 2006, 108, 2722-2722.	1.4	1
112	Non-Hodgkin Lymphoma B-Cells Induce Intratumoral CD4+CD25â^' T Cells To Express Foxp3 and Gain Regulatory Function Blood, 2006, 108, 1724-1724.	1.4	17
113	Rapamycin Enhances the Cytotoxicity of Bortezomib and Rituximab on Mantle Cell Lymphoma (MCL) Cell Lines Blood, 2005, 106, 2411-2411.	1.4	3
114	Role of B-Lymphocyte Stimulator (BLyS) in Waldenstrom's Macroglobulinemia Blood, 2005, 106, 601-601.	1.4	7
115	Absolute Lymphocyte Count and CD4 Count Predict a Superior Progression-Free Survival in Non-Hodgkin Lymphoma Patients Treated with Rituximab and Interleukin-12 Blood, 2005, 106, 1495-1495.	1.4	6
116	Intratumoral CD4+CD25+ Regulatory T-Cell-Mediated Suppression of Infiltrating CD4+ T-Cells in B-Cell Non-Hodgkin Lymphoma Blood, 2005, 106, 3312-3312.	1.4	0
117	Intratumoral Treg Cells Completely Inhibit the Induction and Function of Tumor-Infiltrating CD8+ T-Cells in B-Cell NHL Blood, 2005, 106, 3311-3311.	1.4	O
118	Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood, 2004, 103, 689-694.	1.4	474
119	Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood, 2004, 104, 2247-2253.	1.4	216
120	APRIL Promotes Survival and Proliferation of T Cells: Implications for T-Cell Lymphoma Blood, 2004, 104, 2652-2652.	1.4	0
121	Elevated BLyS Levels in Patients with Familial and Sporadic B-CLL: Correlation with BLyS Polymorphisms Blood, 2004, 104, 964-964.	1.4	O
122	Lack of Increased Clinical Efficacy When Interleukin-12 Is Added to Rituximab in B-Cell Lymphoma Patients Is Related to Inadequate Delivery of the Cytokine to the Sites of Lymphoma Blood, 2004, 104, 1397-1397.	1.4	0
123	B-Lymphocyte Stimulator (BLyS) Is Highly Expressed in Waldenstrom's Macroglobulinemia Blood, 2004, 104, 2291-2291.	1.4	1
124	Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood, 2002, 100, 2973-2979.	1.4	213