
Phillip E Savage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6177191/publications.pdf Version: 2024-02-01

DHILLID F SAVACE

#	Article	IF	CITATIONS
1	Recovery of Energy and Nitrogen via Two-Stage Valorization of Food Waste. Industrial & Engineering Chemistry Research, 2022, 61, 12064-12072.	3.7	4
2	Hydrothermal liquefaction of polysaccharide feedstocks with heterogeneous catalysts. Bioresource Technology, 2022, 352, 127100.	9.6	15
3	Correction to "Announcing the 2021 Class of Influential Researchers – The Americas― Industrial & Engineering Chemistry Research, 2022, 61, 995-995.	3.7	0
4	Effect of Cellulose and Polypropylene on Hydrolysis of Polyethylene Terephthalate for Chemical Recycling. ACS Engineering Au, 2022, 2, 507-514.	5.1	10
5	Protocol to develop component additivity models that predict oil yield from hydrothermal liquefaction. STAR Protocols, 2022, 3, 101536.	1.2	Ο
6	Heterogeneous catalyst stability during hydrodenitrogenation in supercritical water. Catalysis Today, 2021, 371, 171-178.	4.4	5
7	Ring-opening and hydrodenitrogenation of indole under hydrothermal conditions over Ni, Pt, Ru, and Ni-Ru bimetallic catalysts. Chemical Engineering Journal, 2021, 406, 126853.	12.7	32
8	A molecular, elemental, and multiphase kinetic model for the hydrothermal liquefaction of microalgae. Chemical Engineering Journal, 2021, 407, 127007.	12.7	21
9	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
10	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
11	Updating Industrial & Engineering Chemistry Research's Journal Scope and Editorial Team Additions. Industrial & Engineering Chemistry Research, 2021, 60, 1-2.	3.7	0
12	Virtual Special Issue: Celebrating Authors of our Top 1% Most Cited Papers. Industrial & Engineering Chemistry Research, 2021, 60, 1973-1976.	3.7	0
13	<i>I&EC Research</i> Appoints Ashwin W. Patwardhan as Associate Editor. Industrial & Engineering Chemistry Research, 2021, 60, 3259-3259.	3.7	0
14	Screening Potential Catalysts for the Hydrothermal Liquefaction of Food Waste. Energy & Fuels, 2021, 35, 9437-9449.	5.1	8
15	Green Chemistry: A Framework for a Sustainable Future. Organometallics, 2021, 40, 1801-1805.	2.3	4
16	Effects of Potassium Phosphates and Other Additives on Biocrude Production and Composition from Hydrothermal Liquefaction of Pectin and Chitin. Industrial & Engineering Chemistry Research, 2021, 60, 8642-8648.	3.7	5
17	Green Chemistry: A Framework for a Sustainable Future. Organic Letters, 2021, 23, 4935-4939.	4.6	6
18	Green Chemistry: A Framework for a Sustainable Future. Environmental Science & Technology, 2021, 55, 8459-8463.	10.0	12

#	Article	IF	CITATIONS
19	I&EC Research Appoints Two New Associate Editors. Industrial & Engineering Chemistry Research, 2021, 60, 8311-8311.	3.7	0
20	Green Chemistry: A Framework for a Sustainable Future. Organic Process Research and Development, 2021, 25, 1455-1459.	2.7	18
21	Green Chemistry: A Framework for a Sustainable Future. Journal of Organic Chemistry, 2021, 86, 8551-8555.	3.2	4
22	Green Chemistry: A Framework for a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 8336-8340.	6.7	2
23	Green Chemistry: A Framework for a Sustainable Future. Environmental Science and Technology Letters, 2021, 8, 487-491.	8.7	7
24	Green Chemistry: A Framework for a Sustainable Future. Industrial & Engineering Chemistry Research, 2021, 60, 8964-8968.	3.7	3
25	Green Chemistry: A Framework for a Sustainable Future. ACS Omega, 2021, 6, 16254-16258.	3.5	7
26	Synergistic interactions during hydrothermal liquefaction of plastics and biomolecules. Chemical Engineering Journal, 2021, 417, 129268.	12.7	58
27	I&EC Research 2021 Excellence in Review Awards. Industrial & Engineering Chemistry Research, 2021, 60, 13389-13390.	3.7	0
28	Hydrothermal carbonization of simulated food waste for recovery of fatty acids and nutrients. Bioresource Technology, 2021, 341, 125872.	9.6	22
29	Effect of Process Variables on Food Waste Valorization via Hydrothermal Liquefaction. ACS ES&T Engineering, 2021, 1, 363-374.	7.6	49
30	Identifying and Modeling Interactions between Biomass Components during Hydrothermal Liquefaction in Sub-, Near-, and Supercritical Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 13874-13882.	6.7	24
31	Announcing the 2021 Class of Influential Researchers – The Americas. Industrial & Engineering Chemistry Research, 2021, 60, 17283-17284.	3.7	2
32	Component additivity model for plastics—biomass mixtures during hydrothermal liquefaction in sub-, near-, and supercritical water. IScience, 2021, 24, 103498.	4.1	8
33	Fate of iron during hydrothermal liquefaction of hemin. Journal of Supercritical Fluids, 2020, 157, 104705.	3.2	5
34	Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics. Applied Energy, 2020, 260, 114312.	10.1	70
35	Oil from plastic via hydrothermal liquefaction: Production and characterization. Applied Energy, 2020, 278, 115673.	10.1	94
36	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0

#	Article	IF	CITATIONS
37	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	Ο
42	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		Ο
46	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	Ο
48	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	Ο
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0

#	Article	IF	CITATIONS
55	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	Ο
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
59	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		Ο
60	Announcing the 2020 Class of Influential Researchers. Industrial & Engineering Chemistry Research, 2020, 59, 19839-19839.	3.7	3
61	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
62	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
63	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
64	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
65	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	Ο
66	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
67	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
68	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
69	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	Ο
70	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
71	Effects of Potassium Phosphates on Hydrothermal Liquefaction of Triglyceride, Protein, and Polysaccharide. Energy & Fuels, 2020, 34, 15313-15321.	5.1	27
72	I&EC Research 2020 Excellence in Review Awards. Industrial & Engineering Chemistry Research, 2020, 59, 14545-14545.	3.7	0

#	Article	IF	CITATIONS
73	Effect of Additives on Hydrothermal Liquefaction of Polysaccharides. Industrial & Engineering Chemistry Research, 2020, 59, 18480-18488.	3.7	7
74	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
75	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
76	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
77	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	Ο
78	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
79	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
80	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
81	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
82	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
83	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
84	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
85	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
86	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
87	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
88	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
89	Destruction of Perfluoroalkyl Acids Accumulated in <i>Typha latifolia</i> through Hydrothermal Liquefaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9257-9262.	6.7	31
90	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	Ο
92	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
93	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	Ο
94	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
95	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	Ο
96	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
97	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	Ο
98	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
99	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
100	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
101	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
102	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
103	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	Ο
104	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
105	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	Ο
106	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
107	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	Ο
108	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1

#	Article	IF	CITATIONS
109	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
110	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
111	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	Ο
112	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
113	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	О
114	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	Ο
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
117	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	Ο
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
120	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
121	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	Ο
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	Ο
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
126	Fast and Isothermal Hydrothermal Liquefaction of Polysaccharide Feedstocks. ACS Sustainable Chemistry and Engineering, 2020, 8, 3762-3772.	6.7	44

#	Article	IF	CITATIONS
127	Reaction pathways and kinetics of tryptophan in hot, compressed water. Chemical Engineering Journal, 2020, 390, 124600.	12.7	9
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
133	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
134	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
135	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
136	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
137	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
138	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
139	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
140	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
141	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
142	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
144	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0

#	Article	IF	CITATIONS
145	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
146	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
148	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
149	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
150	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
151	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	Ο
152	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
153	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	Ο
154	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
155	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
156	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
157	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	Ο
158	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
159	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	Ο
160	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
161	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
162	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0

#	Article	IF	CITATIONS
163	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
164	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
165	I&EC Research's Spotlight on China. Industrial & Engineering Chemistry Research, 2020, 59, 12287-12287.	3.7	0
166	I&EC Research 2020 Excellence in Review Awards. Industrial & Engineering Chemistry Research, 2020, 59, 15809-15810.	3.7	0
167	<i>110th Anniversary:</i> Influence of Solvents on Biocrude from Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin, and Their Quinary Mixture. Industrial & Engineering Chemistry Research, 2019, 58, 13971-13976.	3.7	30
168	Virtual Special Issue: Best Papers from the 256th ACS National Meeting in Boston. Industrial & Engineering Chemistry Research, 2019, 58, 13793-13793.	3.7	0
169	Biodiversity Improves Life Cycle Sustainability Metrics in Algal Biofuel Production. Environmental Science & Technology, 2019, 53, 9279-9288.	10.0	17
170	The individual and synergistic impacts of feedstock characteristics and reaction conditions on the aqueous co-product from hydrothermal liquefaction. Algal Research, 2019, 42, 101568.	4.6	10
171	Announcing the 2019 Class of Influential Researchers. Industrial & Engineering Chemistry Research, 2019, 58, 18477-18477.	3.7	2
172	Biocrude Production from Fast and Isothermal Hydrothermal Liquefaction of Chitin. Energy & Fuels, 2019, 33, 11328-11338.	5.1	23
173	<i>I&EC Research</i> 2019 Excellence in Review Awards. Industrial & Engineering Chemistry Research, 2019, 58, 17099-17099.	3.7	0
174	Using Solvents To Reduce the Metal Content in Crude Bio-oil from Hydrothermal Liquefaction of Microalgae. Industrial & Engineering Chemistry Research, 2019, 58, 22488-22496.	3.7	23
175	Reaction pathways and kinetics for tetra-alanine in hot, compressed liquid water. Reaction Chemistry and Engineering, 2019, 4, 1237-1252.	3.7	5
176	Virtual Special Issue: Invited Papers from the 255th ACS National Meeting in New Orleans. Industrial & Engineering Chemistry Research, 2019, 58, 3561-3561.	3.7	0
177	<i>I&EC Research</i> Appoints 15th Associate Editor: Xinbin Ma. Industrial & Engineering Chemistry Research, 2019, 58, 5087-5087.	3.7	0
178	Stability and activity maintenance of sol-gel Ni-MxOy (M=Ti, Zr, Ta) catalysts during continuous gasification of glycerol in supercritical water. Journal of Supercritical Fluids, 2019, 148, 137-147.	3.2	23
179	<i>I&EC Research</i> Appoints Huanting Wang as Associate Editor. Industrial & Engineering Chemistry Research, 2019, 58, 20495-20495.	3.7	0
180	The independent and coupled effects of feedstock characteristics and reaction conditions on biocrude production by hydrothermal liquefaction. Applied Energy, 2019, 235, 714-728.	10.1	38

#	Article	IF	CITATIONS
181	Supercritical water gasification of phenol over Ni-Ru bimetallic catalysts. Water Research, 2019, 152, 12-20.	11.3	34
182	Hydrothermal reaction of tryptophan over Ni-based bimetallic catalysts. Journal of Supercritical Fluids, 2019, 143, 336-345.	3.2	21
183	Virtual Special Issue: Advanced Materials for Engineering Applications. Industrial & Engineering Chemistry Research, 2018, 57, 3805-3806.	3.7	1
184	I&EC Research Appoints Newest Associate Editor. Industrial & Engineering Chemistry Research, 2018, 57, 1767-1767.	3.7	0
185	Catalyst Oxidation and Dissolution in Supercritical Water. Chemistry of Materials, 2018, 30, 1218-1229.	6.7	23
186	Metals and Other Elements in Biocrude from Fast and Isothermal Hydrothermal Liquefaction of Microalgae. Energy & Fuels, 2018, 32, 4118-4126.	5.1	39
187	Stability and activity maintenance of Al2O3- and carbon nanotube-supported Ni catalysts during continuous gasification of glycerol in supercritical water. Journal of Supercritical Fluids, 2018, 135, 188-197.	3.2	31
188	Supercritical water upgrading of water-insoluble and water-soluble biocrudes from hydrothermal liquefaction of Nannochloropsis microalgae. Journal of Supercritical Fluids, 2018, 133, 683-689.	3.2	35
189	Announcing the 2018 Class of Influential Researchers. Industrial & Engineering Chemistry Research, 2018, 57, 12601-12601.	3.7	6
190	Synergistic and Antagonistic Interactions during Hydrothermal Liquefaction of Soybean Oil, Soy Protein, Cellulose, Xylose, and Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 14501-14509.	6.7	111
191	ACS Virtual Issue on Multicomponent Systems: Absorption, Adsorption, and Diffusion. Journal of Chemical & Engineering Data, 2018, 63, 3651-3651.	1.9	9
192	<i>I&EC Research</i> 2018 Excellence in Review Awards. Industrial & Engineering Chemistry Research, 2018, 57, 12017-12017.	3.7	0
193	Hydrothermal Liquefaction of Model Food Waste Biomolecules and Ternary Mixtures under Isothermal and Fast Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9018-9027.	6.7	49
194	Ecological Engineering Helps Maximize Function in Algal Oil Production. Applied and Environmental Microbiology, 2018, 84, .	3.1	6
195	Biodiversity improves the ecological design of sustainable biofuel systems. GCB Bioenergy, 2018, 10, 752-765.	5.6	27
196	How Not To Use a Journal Impact Factor. Industrial & Engineering Chemistry Research, 2018, 57, 9331-9332.	3.7	2
197	Virtual Special Issue: Chemistry's Impact on the Global Economy. Industrial & Engineering Chemistry Research, 2018, 57, 8833-8834.	3.7	1
198	Thermodynamic Analysis of Catalyst Stability in Hydrothermal Reaction Media. Industrial & Engineering Chemistry Research, 2018, 57, 8655-8663.	3.7	18

#	Article	IF	CITATIONS
199	Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions. Bioresource Technology, 2017, 232, 27-34.	9.6	150
200	Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction. Bioresource Technology, 2017, 239, 144-150.	9.6	76
201	I&EC Research Appoints Feng-Shou Xiao and Announces "New―Process Section. Industrial & Engineering Chemistry Research, 2017, 56, 2615-2615.	3.7	0
202	Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Bioresource Technology, 2017, 239, 1-6.	9.6	48
203	Why Wasn't My Manuscript Sent Out for Review?. Industrial & Engineering Chemistry Research, 2017, 56, 7109-7111.	3.7	5
204	Virtual Special Issue: Invited Papers from the 251st ACS National Meeting in San Diego. Industrial & Engineering Chemistry Research, 2017, 56, 2339-2340.	3.7	1
205	Algal polycultures enhance coproduct recycling from hydrothermal liquefaction. Bioresource Technology, 2017, 224, 630-638.	9.6	50
206	Announcing the 2017 Class of Influential Researchers. Industrial & Engineering Chemistry Research, 2017, 56, 10515-10515.	3.7	7
207	Ecological Stoichiometry Meets Ecological Engineering: Using Polycultures to Enhance the Multifunctionality of Algal Biocrude Systems. Environmental Science & Technology, 2017, 51, 11450-11458.	10.0	21
208	<i>I&EC Research</i> 2017 Excellence in Review Awards. Industrial & Engineering Chemistry Research, 2017, 56, 9933-9933.	3.7	0
209	ACS Virtual Issue on Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2017, 62, 1927-1928.	1.9	6
210	Influence of process conditions and interventions on metals content in biocrude from hydrothermal liquefaction of microalgae. Algal Research, 2017, 26, 131-134.	4.6	34
211	Virtual Special Issue: Invited Papers from the 252nd ACS National Meeting in Philadelphia. Industrial & Engineering Chemistry Research, 2017, 56, 8787-8788.	3.7	1
212	Influence of biodiversity, biochemical composition, and species identity on the quality of biomass and biocrude oil produced via hydrothermalÂliquefaction. Algal Research, 2017, 26, 203-214.	4.6	28
213	Molecular and Lumped Products from Hydrothermal Liquefaction of Bovine Serum Albumin. ACS Sustainable Chemistry and Engineering, 2017, 5, 10967-10975.	6.7	25
214	Hydrocarbon chemicals from hydrothermal processing of renewable oils over HZSM-5. Biomass Conversion and Biorefinery, 2017, 7, 437-443.	4.6	5
215	"Algae and Environmental Sustainability― Johnson Matthey Technology Review, 2017, 61, 133-137.	1.0	1
216	Behavior of Cholesterol and Catalysts in Supercritical Water. Energy & Fuels, 2016, 30, 7937-7946.	5.1	7

#	Article	IF	CITATIONS
217	Characterization of products from fast and isothermal hydrothermal liquefaction of microalgae. AICHE Journal, 2016, 62, 815-828.	3.6	45
218	<i>I&EC Research</i> : Raising the Bar and Picking up the Pace. Industrial & Engineering Chemistry Research, 2016, 55, 1-2.	3.7	10
219	Near- and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae. Bioresource Technology, 2016, 211, 779-782.	9.6	21
220	Products and Kinetics for Isothermal Hydrothermal Liquefaction of Soy Protein Concentrate. ACS Sustainable Chemistry and Engineering, 2016, 4, 2725-2733.	6.7	52
221	A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp Bioresource Technology, 2016, 214, 102-111.	9.6	88
222	Products, Pathways, and Kinetics for the Fast Hydrothermal Liquefaction of Soy Protein Isolate. ACS Sustainable Chemistry and Engineering, 2016, 4, 6931-6939.	6.7	30
223	Virtual Issue on Process Intensification. Industrial & Engineering Chemistry Research, 2016, 55, 9555-9556.	3.7	1
224	Power of Plankton: Effects of Algal Biodiversity on Biocrude Production and Stability. Environmental Science & Technology, 2016, 50, 13142-13150.	10.0	28
225	Virtual Special Issue: Invited Papers from the 250th ACS National Meeting in Boston. Industrial & Engineering Chemistry Research, 2016, 55, 7579-7579.	3.7	2
226	I&EC Research Presents Excellence in Review Awards for 2016. Industrial & Engineering Chemistry Research, 2016, 55, 9759-9759.	3.7	0
227	Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Bioresource Technology, 2016, 206, 290-293.	9.6	47
228	Reaction pathways and kinetics of cholesterol in high-temperature water. Chemical Engineering Journal, 2015, 265, 129-137.	12.7	17
229	Supercritical water gasification of lipid-extracted hydrochar to recover energy and nutrients. Journal of Supercritical Fluids, 2015, 99, 88-94.	3.2	24
230	Growing Algae for Biodiesel on Direct Sunlight or Sugars: A Comparative Life Cycle Assessment. ACS Sustainable Chemistry and Engineering, 2015, 3, 386-395.	6.7	33
231	Catalytic Hydrothermal Liquefaction of Soy Protein Concentrate. Energy & Fuels, 2015, 29, 3208-3214.	5.1	28
232	Hydrothermal decarboxylation of unsaturated fatty acids over <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">PtSn</mml:mi </mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow>xx</mml:msub></mml:mrow>xxxxxxxxxxxxx<td>6.4 ub><mml:< td=""><td>56 mo>/</td></mml:<></td></mml:math 	6.4 ub> <mml:< td=""><td>56 mo>/</td></mml:<>	56 mo>/
233	Aromatics from saturated and unsaturated fatty acids via zeolite catalysis in supercritical water. Journal of Supercritical Fluids, 2015, 102, 73-79.	3.2	25
234	New Virtual Special Issue of Most-Cited Papers Posts: All-Time Greats and Contemporary Favorites. Industrial & Engineering Chemistry Research, 2015, 54, 7757-7759.	3.7	3

#	Article	IF	CITATIONS
235	Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae. Algal Research, 2015, 12, 60-67.	4.6	54
236	Hydrothermal Reactions of Biomolecules Relevant for Microalgae Liquefaction. Industrial & Engineering Chemistry Research, 2015, 54, 11733-11758.	3.7	128
237	Trash to Treasure: From Harmful Algal Blooms to High-Performance Electrodes for Sodium-Ion Batteries. Environmental Science & Technology, 2015, 49, 12543-12550.	10.0	92
238	Catalytic gasification of indole in supercritical water. Applied Catalysis B: Environmental, 2015, 166-167, 202-210.	20.2	39
239	Fatty Acids for Nutraceuticals and Biofuels from Hydrothermal Carbonization of Microalgae. Industrial & Engineering Chemistry Research, 2015, 54, 4066-4071.	3.7	56
240	Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures. Energy & Fuels, 2014, 28, 7501-7509.	5.1	183
241	Kinetic model for reactions of indole under supercritical water gasification conditions. Chemical Engineering Journal, 2014, 241, 327-335.	12.7	37
242	I&EC Research: Looking Ahead. Industrial & Engineering Chemistry Research, 2014, 53, 1-1.	3.7	11
243	Hydrothermal Liquefaction of Bacteria and Yeast Monocultures. Energy & Fuels, 2014, 28, 67-75.	5.1	34
244	Catalytic Hydrothermal Liquefaction of a Microalga in a Two-Chamber Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 11939-11944.	3.7	25
245	Characterization of biocrudes recovered with and without solvent after hydrothermal liquefaction of algae. Algal Research, 2014, 6, 1-7.	4.6	83
246	Life Cycle Design of an Algal Biorefinery Featuring Hydrothermal Liquefaction: Effect of Reaction Conditions and an Alternative Pathway Including Microbial Regrowth. ACS Sustainable Chemistry and Engineering, 2014, 2, 867-874.	6.7	44
247	Hydrothermal Catalytic Cracking of Fatty Acids with HZSM-5. ACS Sustainable Chemistry and Engineering, 2014, 2, 88-94.	6.7	60
248	Development of NiCu Catalysts for Aqueous-Phase Hydrodeoxygenation. ACS Catalysis, 2014, 4, 2605-2615.	11.2	64
249	New Sections in Industrial & Engineering Chemistry Research. Industrial & Engineering Chemistry Research, 2014, 53, 5623-5623.	3.7	0
250	Hydrolytic Cleavage of C–O Linkages in Lignin Model Compounds Catalyzed by Water-Tolerant Lewis Acids. Industrial & Engineering Chemistry Research, 2014, 53, 2633-2639.	3.7	75
251	Deactivation of Pt Catalysts during Hydrothermal Decarboxylation of Butyric Acid. ACS Sustainable Chemistry and Engineering, 2014, 2, 2399-2406.	6.7	30
252	Hydrothermal catalytic processing of pretreated algal oil: A catalyst screening study. Fuel, 2014, 120, 141-149.	6.4	125

#	Article	IF	CITATIONS
253	A general kinetic model for the hydrothermal liquefaction of microalgae. Bioresource Technology, 2014, 163, 123-127.	9.6	171
254	Stability and activity of Pt and Ni catalysts for hydrodeoxygenation in supercritical water. Journal of Molecular Catalysis A, 2014, 388-389, 56-65.	4.8	22
255	Anisole hydrolysis in high temperature water. Physical Chemistry Chemical Physics, 2013, 15, 3562.	2.8	13
256	A reaction network for the hydrothermal liquefaction of Nannochloropsis sp Algal Research, 2013, 2, 416-425.	4.6	102
257	Reaction pathways and kinetic modeling for phenol gasification in supercritical water. Journal of Supercritical Fluids, 2013, 81, 200-209.	3.2	75
258	Process improvements for the supercritical in situ transesterification of carbonized algal biomass. Bioresource Technology, 2013, 136, 556-564.	9.6	44
259	Fast Hydrothermal Liquefaction of <i>Nannochloropsis</i> sp. To Produce Biocrude. Energy & Fuels, 2013, 27, 1391-1398.	5.1	194
260	Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. Journal of Chemical Technology and Biotechnology, 2013, 88, 13-24.	3.2	163
261	Feedstocks for fuels and chemicals from algae: Treatment of crude bio-oil over HZSM-5. Algal Research, 2013, 2, 154-163.	4.6	105
262	Products, pathways, and kinetics for reactions of indole under supercritical water gasification conditions. Journal of Supercritical Fluids, 2013, 73, 161-170.	3.2	48
263	The use of hydrothermal carbonization to recycle nutrients in algal biofuel production. Environmental Progress and Sustainable Energy, 2013, 32, 962-975.	2.3	60
264	A perspective on algae, the environment, and energy. Environmental Progress and Sustainable Energy, 2013, 32, 877-883.	2.3	27
265	Algae Under Pressure and in Hot Water. Science, 2012, 338, 1039-1040.	12.6	94
266	Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass and Bioenergy, 2012, 46, 317-331.	5.7	301
267	Kinetics and pathways for an algal phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine) in high-temperature (175–350 ŰC) water. Green Chemistry, 2012, 14, 2856.	9.0	35
268	Intermediates and kinetics for phenol gasification in supercritical water. Physical Chemistry Chemical Physics, 2012, 14, 2900.	2.8	65
269	Hydrothermal Gasification of Nannochloropsis sp. with Ru/C. Energy & Fuels, 2012, 26, 4575-4582.	5.1	47
270	Deoxygenation of benzofuran in supercritical water over a platinum catalyst. Applied Catalysis B: Environmental, 2012, 123-124, 357-366.	20.2	26

#	Article	IF	CITATIONS
271	Hydrothermal Reaction Kinetics and Pathways of Phenylalanine Alone and in Binary Mixtures. ChemSusChem, 2012, 5, 1743-1757.	6.8	59
272	Kinetic model for supercritical water gasification of algae. Physical Chemistry Chemical Physics, 2012, 14, 3140.	2.8	101
273	Reaction kinetics and pathways for phytol in high-temperature water. Chemical Engineering Journal, 2012, 189-190, 336-345.	12.7	39
274	Triflate-catalyzed (trans)esterification of lipids within carbonized algal biomass. Bioresource Technology, 2012, 111, 222-229.	9.6	30
275	Gasification of alga Nannochloropsis sp. in supercritical water. Journal of Supercritical Fluids, 2012, 61, 139-145.	3.2	141
276	Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2011, 50, 52-61.	3.7	492
277	Modeling Hydrolysis and Esterification Kinetics for Biofuel Processes. Industrial & Engineering Chemistry Research, 2011, 50, 3206-3211.	3.7	27
278	Characterization of Product Fractions from Hydrothermal Liquefaction of <i>Nannochloropsis</i> sp. and the Influence of Solvents. Energy & Fuels, 2011, 25, 3235-3243.	5.1	181
279	Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids. ACS Catalysis, 2011, 1, 227-231.	11.2	122
280	Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies. Energy and Environmental Science, 2011, 4, 1447.	30.8	150
281	Mechanistic Modeling of Hydrolysis and Esterification for Biofuel Processes. Industrial & Engineering Chemistry Research, 2011, 50, 12471-12478.	3.7	19
282	Catalytic hydrothermal hydrodenitrogenation of pyridine. Applied Catalysis B: Environmental, 2011, 108-109, 54-60.	20.2	76
283	Biorefinery sustainability assessment. Environmental Progress and Sustainable Energy, 2011, 30, 743-753.	2.3	36
284	Hydrothermal Decarboxylation and Hydrogenation of Fatty Acids over Pt/C. ChemSusChem, 2011, 4, 481-486.	6.8	209
285	Upgrading of crude algal bio-oil in supercritical water. Bioresource Technology, 2011, 102, 1899-1906.	9.6	255
286	Catalytic hydrotreatment of crude algal bio-oil in supercritical water. Applied Catalysis B: Environmental, 2011, 104, 136-143.	20.2	158
287	Hydration of 1-Phenyl-1-Propyne in High-Temperature Water with Catalysis by Water-Tolerant Lewis Acids. Industrial & Engineering Chemistry Research, 2010, 49, 535-540.	3.7	19
288	Kinetic model for noncatalytic supercritical water gasification of cellulose and lignin. AICHE Journal, 2010, 56, 2412-2420.	3.6	50

#	Article	IF	CITATIONS
289	Kinetics and mechanism of N-substituted amide hydrolysis in high-temperature water. Journal of Supercritical Fluids, 2010, 51, 362-368.	3.2	34
290	Noncatalytic esterification of oleic acid in ethanol. Journal of Supercritical Fluids, 2010, 53, 53-59.	3.2	57
291	Hydrothermal Liquefaction and Gasification of Nannochloropsis sp Energy & Fuels, 2010, 24, 3639-3646.	5.1	633
292	Biodiesel Production from Wet Algal Biomass through in Situ Lipid Hydrolysis and Supercritical Transesterification. Energy & Fuels, 2010, 24, 5235-5243.	5.1	247
293	Catalytic hydrothermal deoxygenation of palmitic acid. Energy and Environmental Science, 2010, 3, 311.	30.8	213
294	Effect of Metals on Supercritical Water Gasification of Cellulose and Lignin. Industrial & Engineering Chemistry Research, 2010, 49, 2694-2700.	3.7	100
295	Terephthalic acid synthesis at higher concentrations in highâ€ŧemperature liquid water. 1. Effect of oxygen feed method. AICHE Journal, 2009, 55, 710-716.	3.6	18
296	Terephthalic acid synthesis at higher concentrations in highâ€ŧemperature liquid water. 2. Eliminating undesired byproducts. AICHE Journal, 2009, 55, 1530-1537.	3.6	14
297	A perspective on catalysis in sub- and supercritical water. Journal of Supercritical Fluids, 2009, 47, 407-414.	3.2	285
298	Expanded and Updated Results for Supercritical Water Gasification of Cellulose and Lignin in Metal-Free Reactors. Energy & Fuels, 2009, 23, 6213-6221.	5.1	57
299	A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles. Industrial & Engineering Chemistry Research, 2009, 48, 4316-4321.	3.7	28
300	Hydrothermal Decarboxylation of Pentafluorobenzoic Acid and Quinolinic Acid. Industrial & Engineering Chemistry Research, 2009, 48, 10467-10471.	3.7	12
301	Quantifying rate enhancements for acid catalysis in CO ₂ â€enriched highâ€ŧemperature water. AICHE Journal, 2008, 54, 516-528.	3.6	55
302	Assessment of Noncatalytic Biodiesel Synthesis Using Supercritical Reaction Conditions. Industrial & Engineering Chemistry Research, 2008, 47, 6801-6808.	3.7	127
303	Effect of pH on Ether, Ester, and Carbonate Hydrolysis in High-Temperature Water. Industrial & Engineering Chemistry Research, 2008, 47, 577-584.	3.7	50
304	Supercritical Water Gasification of Phenol and Glycine as Models for Plant and Protein Biomass. Energy & Fuels, 2008, 22, 871-877.	5.1	67
305	Noncatalytic Gasification of Lignin in Supercritical Water. Energy & amp; Fuels, 2008, 22, 1328-1334.	5.1	108
306	Gasification of Guaiacol and Phenol in Supercritical Water. Energy & amp; Fuels, 2007, 21, 2340-2345.	5.1	93

#	Article	IF	CITATIONS
307	Noncatalytic Gasification of Cellulose in Supercritical Water. Energy & amp; Fuels, 2007, 21, 3637-3643.	5.1	66
308	Benzil Rearrangement Kinetics and Pathways in High-Temperature Water. Industrial & Engineering Chemistry Research, 2007, 46, 1690-1695.	3.7	11
309	Hydrothermal Synthesis of CdSe Nanoparticles. Industrial & Engineering Chemistry Research, 2007, 46, 4358-4362.	3.7	40
310	Kinetics and Mechanism of Tetrahydrofuran Synthesis via 1,4-Butanediol Dehydration in High-Temperature Water. Journal of Organic Chemistry, 2006, 71, 6229-6239.	3.2	107
311	Microcontaminants in Pentachlorophenol Synthesis. 3. Effect of Temperature and Chlorine Flow Rate at End of Run. Industrial & Engineering Chemistry Research, 2006, 45, 5211-5216.	3.7	2
312	Bisphenol E Decomposition in High-Temperature Water. Industrial & Engineering Chemistry Research, 2006, 45, 7775-7780.	3.7	6
313	Microcontaminants in Pentachlorophenol Synthesis. 4. Effect of Nickel and Other Metal Powders. Industrial & Engineering Chemistry Research, 2006, 45, 5217-5222.	3.7	1
314	Effect of Water Density on Methanol Oxidation Kinetics in Supercritical Water. Journal of Physical Chemistry A, 2006, 110, 3627-3632.	2.5	27
315	Microcontaminants in Pentachlorophenol Synthesis. 1. New Bioassay for Microcontaminant Quantification. Industrial & Engineering Chemistry Research, 2006, 45, 5199-5204.	3.7	7
316	Microcontaminants in Pentachlorophenol Synthesis. 2. Effects of Catalyst Identity, Concentration, and Addition Strategy. Industrial & Engineering Chemistry Research, 2006, 45, 5205-5210.	3.7	3
317	RECENT ADVANCES IN CATALYTIC OXIDATION IN SUPERCRITICAL WATER. Combustion Science and Technology, 2006, 178, 443-465.	2.3	47
318	Catalysis during methanol gasification in supercritical water. Journal of Supercritical Fluids, 2006, 39, 228-232.	3.2	64
319	Supercritical Water Oxidation of Methylamine. Industrial & Engineering Chemistry Research, 2005, 44, 5318-5324.	3.7	56
320	Detailed Chemical Kinetic Modeling of Methylamine in Supercritical Water. Industrial & Engineering Chemistry Research, 2005, 44, 9785-9793.	3.7	34
321	High-Temperature Liquid Water:Â A Viable Medium for Terephthalic Acid Synthesis. Environmental Science & Technology, 2005, 39, 5427-5435.	10.0	35
322	The benzil–benzilic acid rearrangement in high-temperature water. Green Chemistry, 2005, 7, 800.	9.0	30
323	Hydrothermal reactions of methylamine. Journal of Supercritical Fluids, 2004, 31, 301-311.	3.2	32
324	Recent advances in acid- and base-catalyzed organic synthesis in high-temperature liquid water. Chemical Engineering Science, 2004, 59, 4903-4909.	3.8	106

#	Article	IF	CITATIONS
325	Synthesis of p-isopropenylphenol in high-temperature water. Green Chemistry, 2004, 6, 222.	9.0	35
326	Kinetics and Mechanism of p-Isopropenylphenol Synthesis via Hydrothermal Cleavage of Bisphenol A. Journal of Organic Chemistry, 2004, 69, 4724-4731.	3.2	46
327	Reaction Pathways in Pentachlorophenol Synthesis. 1. Temperature-Programmed Reaction. Industrial & Engineering Chemistry Research, 2004, 43, 5021-5026.	3.7	10
328	Reaction Pathways in Pentachlorophenol Synthesis. 2. Isothermal Reaction. Industrial & Engineering Chemistry Research, 2004, 43, 6292-6298.	3.7	4
329	Potential Explanations for the Inhibition and Acceleration of Phenol SCWO by Water. Industrial & Engineering Chemistry Research, 2004, 43, 4841-4847.	3.7	15
330	Kinetics of crossed aldol condensations in high-temperature water. Green Chemistry, 2004, 6, 227.	9.0	44
331	Water-density effects on phenol oxidation in supercritical water. AICHE Journal, 2003, 49, 718-726.	3.6	15
332	Hydrothermal stability of aromatic carboxylic acids. Journal of Supercritical Fluids, 2003, 27, 263-274.	3.2	62
333	Inhibition and Acceleration of Phenol Oxidation by Supercritical Water. Industrial & Engineering Chemistry Research, 2003, 42, 6303-6309.	3.7	30
334	Economic and environmental assessment of high-temperature water as a medium for terephthalic acid synthesis. Green Chemistry, 2003, 5, 649.	9.0	34
335	Acid-Catalyzed Reactions in Carbon Dioxide-Enriched High-Temperature Liquid Water. Industrial & Engineering Chemistry Research, 2003, 42, 290-294.	3.7	81
336	Roles of Water for Chemical Reactions in High-Temperature Water. Chemical Reviews, 2002, 102, 2725-2750.	47.7	1,356
337	Kinetics and Mechanism of Cyclohexanol Dehydration in High-Temperature Water. Industrial & Engineering Chemistry Research, 2001, 40, 1822-1831.	3.7	76
338	Pyrolysis Kinetics for Long-Chain n-Alkylcyclohexanes. Industrial & Engineering Chemistry Research, 2001, 40, 1805-1810.	3.7	11
339	Heterogeneous catalysis in supercritical water. Catalysis Today, 2000, 62, 167-173.	4.4	76
340	Oxidation kinetics for methane/methanol mixtures in supercritical water. Journal of Supercritical Fluids, 2000, 17, 155-170.	3.2	63
341	Mechanisms and kinetics models for hydrocarbon pyrolysis. Journal of Analytical and Applied Pyrolysis, 2000, 54, 109-126.	5.5	174
342	Phenol oxidation over CuO/Al2O3 in supercritical water. Applied Catalysis B: Environmental, 2000, 28, 275-288.	20.2	69

#	Article	IF	CITATIONS
343	Effect of Water Density on Hydrogen Peroxide Dissociation in Supercritical Water. 1. Reaction Equilibrium. Journal of Physical Chemistry A, 2000, 104, 4433-4440.	2.5	31
344	Kinetics of MnO2-Catalyzed Acetic Acid Oxidation in Supercritical Water. Industrial & Engineering Chemistry Research, 2000, 39, 4014-4019.	3.7	27
345	Kinetics of Catalytic Supercritical Water Oxidation of Phenol over TiO2. Environmental Science & Technology, 2000, 34, 3191-3198.	10.0	46
346	Effect of Water Density on Hydrogen Peroxide Dissociation in Supercritical Water. 2. Reaction Kinetics. Journal of Physical Chemistry A, 2000, 104, 4441-4448.	2.5	36
347	Organic Chemical Reactions in Supercritical Water. Chemical Reviews, 1999, 99, 603-622.	47.7	1,270
348	Catalytic Oxidation of Phenol over MnO2in Supercritical Water. Industrial & Engineering Chemistry Research, 1999, 38, 3793-3801.	3.7	47
349	Oxidation and Thermolysis of Methoxy-, Nitro-, and Hydroxy-Substituted Phenols in Supercritical Water. Industrial & Engineering Chemistry Research, 1999, 38, 1784-1791.	3.7	34
350	Total Organic Carbon Disappearance Kinetics for the Supercritical Water Oxidation of Monosubstituted Phenols. Environmental Science & Technology, 1999, 33, 1911-1915.	10.0	38
351	Supercritical Water Oxidation Kinetics and Pathways for Ethylphenols, Hydroxyacetophenones, and Other Monosubstituted Phenols. Industrial & Engineering Chemistry Research, 1999, 38, 1775-1783.	3.7	27
352	A reduced mechanism for methanol oxidation in supercritical water. Chemical Engineering Science, 1998, 53, 857-867.	3.8	61
353	Role of water in formic acid decomposition. AICHE Journal, 1998, 44, 405-415.	3.6	216
354	Fast catalytic oxidation of phenol in supercritical water. Catalysis Today, 1998, 40, 333-342.	4.4	57
355	Kinetics and mechanism of methane oxidation in supercritical water. Journal of Supercritical Fluids, 1998, 12, 141-153.	3.2	71
356	Decomposition of Formic Acid under Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 1998, 37, 2-10.	3.7	289
357	Reaction Models For Supercritical Water Oxidation Processes Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 1371-1374.	0.0	2
358	Thermal Decomposition of Substituted Phenols in Supercritical Water. Industrial & Engineering Chemistry Research, 1997, 36, 1385-1390.	3.7	70
359	Thermal Cleavage of the One-Atom Arylâ^'Hydroaryl Bridge in 2-(1-Naphthylmethyl)-3,4-dihydronaphthalene. Energy & Fuels, 1997, 11, 1264-1271.	5.1	1
360	Pyrolysis of Polycyclic Perhydroarenes. 3. 1-n-Decylperhydropyrene and Structureâ^'Reactivity Relations. Industrial & amp; Engineering Chemistry Research, 1997, 36, 1965-1972.	3.7	4

#	Article	IF	CITATIONS
361	Pyrolysis of Polycyclic Perhydroarenes. 2. 1-n-Undecylperhydronaphthalene. Energy & Fuels, 1997, 11, 107-115.	5.1	5
362	Supercritical Water Oxidation Kinetics, Products, and Pathways for CH3- and CHO-Substituted Phenols. Industrial & Engineering Chemistry Research, 1997, 36, 1391-1400.	3.7	71
363	Critical point and coexistence curve for a flexible, simple point-charge water model. Journal of Supercritical Fluids, 1997, 10, 119-125.	3.2	10
364	Fugacity coefficients for free radicals in dense fluids: HO2 in supercritical water. AICHE Journal, 1997, 43, 1287-1299.	3.6	17
365	Pathways, Kinetics, and Mechanisms for 2-Dodecyl-9,10-dihydrophenanthrene Pyrolysis. Industrial & Engineering Chemistry Research, 1996, 35, 1517-1523.	3.7	4
366	Pyrolysis of Polycyclic Perhydroarenes. 1. 9-n-Dodecylperhydroanthracene. Industrial & Engineering Chemistry Research, 1996, 35, 2096-2102.	3.7	9
367	Comparison of rigid and flexible simple point charge water models at supercritical conditions. Journal of Computational Chemistry, 1996, 17, 1757-1770.	3.3	59
368	Temperature Dependence of Hydrogen Bonding in Supercritical Water. The Journal of Physical Chemistry, 1996, 100, 403-408.	2.9	152
369	Kinetics and Mechanism of Methanol Oxidation in Supercritical Water. The Journal of Physical Chemistry, 1996, 100, 15834-15842.	2.9	109
370	Comparison of rigid and flexible simple point charge water models at supercritical conditions. , 1996, 17, 1757.		2
371	Comparison of rigid and flexible simple point charge water models at supercritical conditions. Journal of Computational Chemistry, 1996, 17, 1757-1770.	3.3	1
372	Reactions at supercritical conditions: Applications and fundamentals. AICHE Journal, 1995, 41, 1723-1778.	3.6	875
373	Detailed chemical kinetics model for supercritical water oxidation of C1 compounds and H2. AICHE Journal, 1995, 41, 1874-1888.	3.6	99
374	A Molecular Dynamics Investigation of Hydrogen Bonding in Supercritical Water. ACS Symposium Series, 1995, , 47-64.	0.5	12
375	Hydrogen-Transfer Mechanisms in 1-Dodecylpyrene Pyrolysis. Energy & Fuels, 1995, 9, 590-598.	5.1	26
376	Kinetics of Acetic Acid Oxidation in Supercritical Water. Environmental Science & Technology, 1995, 29, 216-221.	10.0	62
377	Phenol Oxidation in Supercritical Water. ACS Symposium Series, 1995, , 217-231.	0.5	20
378	Kinetics and Products from o-Cresol Oxidation in Supercritical Water. Industrial & Engineering Chemistry Research, 1995, 34, 1941-1951.	3.7	32

#	Article	IF	CITATIONS
379	Methane to methanol in supercritical water. Journal of Supercritical Fluids, 1994, 7, 135-144.	3.2	55
380	Molecular Dynamics of Supercritical Water Using a Flexible SPC Model. The Journal of Physical Chemistry, 1994, 98, 13067-13076.	2.9	92
381	Are aromatic diluents used in pyrolysis experiments inert?. Industrial & Engineering Chemistry Research, 1994, 33, 1086-1089.	3.7	7
382	Reaction Mechanism for Phenol Oxidation in Supercritical Water. The Journal of Physical Chemistry, 1994, 98, 12646-12652.	2.9	115
383	2-Chlorophenol oxidation in supercritical water: Global kinetics and reaction products. AICHE Journal, 1993, 39, 178-187.	3.6	99
384	Reactions of polycyclic alkylaromatics: 5. pyrolysis of methylanthracenes. AICHE Journal, 1993, 39, 1355-1362.	3.6	16
385	Phenol oxidation pathways in supercritical water. Industrial & Engineering Chemistry Research, 1992, 31, 2451-2456.	3.7	95
386	Reply to comments on "Phenol oxidation in supercritical water: formation of dibenzofuran, dibenzo-p-dioxin, and related compounds". Environmental Science & Technology, 1992, 26, 1850-1850.	10.0	2
387	Kinetics of carbon dioxide formation from the oxidation of phenols in supercritical water. Environmental Science & Technology, 1992, 26, 2388-2395.	10.0	44
388	Kinetics of phenol oxidation in supercritical water. AICHE Journal, 1992, 38, 321-327.	3.6	116
389	Reactions of polycyclic alkylaromatics. 1. Pathways, kinetics, and mechanisms for 1-dodecylpyrene pyrolysis. Industrial & Engineering Chemistry Research, 1991, 30, 331-339.	3.7	18
390	Phenol oxidation in supercritical water: formation of dibenzofuran, dibenzo-p-dioxin, and related compounds. Environmental Science & amp; Technology, 1991, 25, 1507-1510.	10.0	68
391	Reactions of polycyclic alkylaromatics: Structure and reactivity. AICHE Journal, 1991, 37, 1613-1624.	3.6	49
392	Pyrolysis of a binary mixture of complex hydrocarbons: Reaction modeling. Chemical Engineering Science, 1990, 45, 859-873.	3.8	18
393	Phenol oxidation in supercritical water. Journal of Supercritical Fluids, 1990, 3, 240-248.	3.2	113
394	Pyrolysis kinetics for long-chain n-alkylbenzenes: experimental and mechanistic modeling results. Industrial & Engineering Chemistry Research, 1990, 29, 499-502.	3.7	25
395	Asphaltene reaction pathways—v. Chemical and mathematical modeling. Chemical Engineering Science, 1989, 44, 393-404.	3.8	54
396	Kinetics of coupled reactions: Lumping pentadecylbenzene pyrolysis into three parallel chains. Chemical Engineering Science, 1989, 44, 985-991.	3.8	22

#	Article	IF	CITATIONS
397	Asphaltene reaction pathways. 4. Pyrolysis of tridecylcyclohexane and 2-ethyltetralin. Industrial & Engineering Chemistry Research, 1988, 27, 1348-1356.	3.7	50
398	Asphaltene reaction pathways. 3. Effect of reaction environment. Energy & amp; Fuels, 1988, 2, 619-628.	5.1	83
399	Asphaltene reaction pathways. 2. Pyrolysis of n-pentadecylbenzene. Industrial & Engineering Chemistry Research, 1987, 26, 488-494.	3.7	89
400	Discrimination between molecular and free-radical models of 1-phenyldodecane pyrolysis. Industrial & Engineering Chemistry Research, 1987, 26, 374-376.	3.7	26
401	Asphaltene reaction pathways. 1. Thermolysis. Industrial & Engineering Chemistry Process Design and Development, 1985, 24, 1169-1174.	0.6	91