
Mercedes Ruiz Montoya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6177104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of autohydrolysis on hemicellulose extraction and pyrolytic hydrogen production from Eucalyptus urograndis. Biomass Conversion and Biorefinery, 2022, 12, 4021-4030.	2.9	4
2	Thermogravimetry Applicability in Compost and Composting Research: A Review. Applied Sciences (Switzerland), 2021, 11, 1692.	1.3	18
3	Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. Ultrasonics Sonochemistry, 2021, 76, 105654.	3.8	25
4	Influence of Cellulose Characteristics on Pyrolysis Suitability. Processes, 2021, 9, 1584.	1.3	5
5	Determination of booster biocides in sediments by focused ultrasound-assisted extraction and stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry. Microchemical Journal, 2020, 152, 104445.	2.3	11
6	MSW Compost Valorization by Pyrolysis: Influence of Composting Process Parameters. ACS Omega, 2020, 5, 20810-20816.	1.6	7
7	Electrochemical oxidation of isothiazolinone biocides and their interaction with cysteine. Electrochimica Acta, 2020, 337, 135770.	2.6	3
8	Electrochemical Oxidation Pathways of Hydroxycoumarins on Carbon Electrodes Examined by LSCV and LC–MS/MS. Journal of the Electrochemical Society, 2019, 166, H331-H335.	1.3	2
9	Energetic valorization of MSW compost valorization by selecting the maturity conditions. Journal of Environmental Management, 2019, 238, 153-158.	3.8	16
10	Exploring the relation between composition of extracts of healthy foods and their antioxidant capacities determined by electrochemical and spectrophotometrical methods. LWT - Food Science and Technology, 2018, 95, 157-166.	2.5	12
11	Influence of controllable variables on the composting process, kinetic, and maturity of Stevia rebaudiana residues. International Journal of Recycling of Organic Waste in Agriculture, 2018, 7, 277-286.	2.0	1
12	An Electrochemical Method for the Determination of Antioxidant Capacities Applied to Components of Spices and Condiments. Journal of the Electrochemical Society, 2017, 164, B97-B102.	1.3	10
13	Comparison of the volatile antioxidant contents in the aqueous and methanolic extracts of a set of commercial spices and condiments. European Food Research and Technology, 2017, 243, 1439-1445.	1.6	9
14	Evaluation of synergistic and antagonistic effects between some selected antioxidants by means of an electrochemical technique. International Journal of Food Science and Technology, 2017, 52, 1639-1644.	1.3	3
15	Spectroscopic determination of the dissociation constants of 2,4- and 2,5-dihydroxybenzaldehydes and relationships to their antioxidant activities. Comptes Rendus Chimie, 2017, 20, 365-369.	0.2	3
16	A Contribution on the Elucidation of the Electrooxidation Mechanism of Gentisaldehyde on a Glassy Carbon Electrode. Journal of the Electrochemical Society, 2016, 163, H1127-H1131.	1.3	3
17	Elucidation of the Electrochemical Oxidation Mechanism of the Antioxidant Sesamol on a Glassy Carbon Electrode. Journal of the Electrochemical Society, 2014, 161, C27-G32.	1.3	13
18	Mechanism of Mercury Electrooxidation in the Presence of Hydrogen Peroxide and Antioxidants. Journal of the Electrochemical Society, 2014, 161, H854-H859.	1.3	10

#	Article	IF	CITATIONS
19	Determination of Antioxidant Activity of Spices and Their Active Principles by Differential Pulse Voltammetry. Journal of Agricultural and Food Chemistry, 2014, 62, 582-589.	2.4	27
20	Electrochemical behaviour of 3,5,6-trichloro-4-methyl-pyridine-2-carboxylic acid on mercury and carbon electrodes. Electrochimica Acta, 2013, 102, 72-78.	2.6	2
21	Maximising municipal solid waste – Legume trimming residue mixture degradation in composting by control parameters optimization. Journal of Environmental Management, 2013, 128, 266-273.	3.8	16
22	Analysis of the Interaction of Radical Scavengers with ROS Electrogenerated from Hydrogen Peroxide. Journal of the Electrochemical Society, 2013, 160, H213-H218.	1.3	15
23	Comparison of the Simple Cyclic Voltammetry (CV) and DPPH Assays for the Determination of Antioxidant Capacity of Active Principles. Molecules, 2012, 17, 5126-5138.	1.7	141
24	Effect of aeration rate and moisture content on the emissions of selected VOCs during municipal solid waste composting. Journal of Material Cycles and Waste Management, 2012, 14, 371-378.	1.6	20
25	Electroreduction mechanism of 8-quinolinecarboxylic acid and the herbicide quinmerac on mercury electrodes. Electrochimica Acta, 2012, 74, 87-92.	2.6	0
26	Use of electronic nose and GC-MS in detection and monitoring some VOC. Atmospheric Environment, 2012, 51, 278-285.	1.9	87
27	Influence of Control Parameters in VOCs Evolution during MSW Trimming Residues Composting. Journal of Agricultural and Food Chemistry, 2011, 59, 13035-13042.	2.4	22
28	Imidazolinone herbicides in strongly acidic media: Speciation and electroreduction. Comptes Rendus Chimie, 2011, 14, 957-962.	0.2	12
29	2D nucleation in the electroreduction of 8-quinolinecarboxylic acid, and the herbicide quinmerac on mercury electrodes. Electrochimica Acta, 2011, 58, 662-667.	2.6	3
30	Reductive cleavage of chlorine from 6-chloronicotinic acid on mercury electrodes. Electrochimica Acta, 2011, 56, 4631-4637.	2.6	6
31	A chronoamperometric study of the oxidative nucleation of niazid and isoniazid on mercury electrodes in basic solutions. Collection of Czechoslovak Chemical Communications, 2011, 76, 755-762.	1.0	0
32	Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes. Electrochimica Acta, 2010, 55, 3164-3170.	2.6	3
33	Effect of control parameters on emitted volatile compounds in municipal solid waste and pine trimmings composting. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 855-862.	0.9	28
34	Protonationâ [~] 'Dissociation Reactions of Imazamethabenz-Methyl and Imazamethabenz-Acid in Relation to Their Soil Sorption and Abiotic Degradation. Journal of Agricultural and Food Chemistry, 2009, 57, 11292-11296.	2.4	10
35	On the Adsorption and Reduction of the Herbicide Picloram on Mercury and Carbon Electrodes. Helvetica Chimica Acta, 2008, 91, 1443-1452.	1.0	7
36	A Contribution to the Elucidation of the Reduction Mechanism of 2-Chloroisonicotinic Acid on Mercury Electrodes. Journal of the Electrochemical Society, 2008, 155, F190.	1.3	2

#	Article	IF	CITATIONS
37	EC(EE) process in the reduction of the herbicide clopyralid on mercury electrodes. Electrochimica Acta, 2006, 51, 4302-4308.	2.6	32
38	On the Electrochemical Reduction of the Herbicide Picloram on Mercury Electrodes. Journal of the Electrochemical Society, 2006, 153, E33.	1.3	10
39	Possibility of Reductive Deactivation of S-Triazines and Parent Compounds on Waters and Sediments. Water, Air, and Soil Pollution, 2005, 165, 347-364.	1.1	3
40	A Voltammetric Study of the Adsorption–Desorption Processes in the Reduction of the Herbicide Picloram on Mercury Electrodes. Journal of the Electrochemical Society, 2005, 152, E379.	1.3	9
41	The Reduction of 2,6-Dimethoxy-4-chloro-1,3,5-triazine on Mercury Electrodes in Aqueous Solutions in Relation with the Reduction of s-Triazine Herbicides. Electroanalysis, 2004, 16, 1972-1976.	1.5	4
42	On the Electroreduction Mechanism of 2-Chloro-4,6-diamino-1,3,5-triazine on Mercury Electrodes. Journal of the Electrochemical Society, 2003, 150, E389.	1.3	4
43	A Contribution to the Study of the Electroreduction of 2,4-Diamino-1,3,5-triazine on Mercury Electrodes. Journal of the Electrochemical Society, 2002, 149, E306.	1.3	12
44	EC(EE) processes in the reduction of some 2-methylthio-4,6-di(alkylamino)-1,3,5-triazines on mercury electrodes. Electrochemistry Communications, 2002, 4, 30-35.	2.3	13
45	A contribution to the study of the electroreduction of 2-chloro-4,6-di(ethylamino)-1,3,5-triazine (simazine) on mercury electrodes. Journal of Electroanalytical Chemistry, 1999, 474, 174-181.	1.9	36
46	On the electroreduction of 4-chloro-2,6-diisopropylamino-s-triazine (propazine) on mercury electrodes. Electrochemistry Communications, 1999, 1, 184-189.	2.3	21
47	Electrochemical Oxidation of Diethyl 1,4-Dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate on a Glassy Carbon Electrode as Model Compound of NADH. Electroanalysis, 1999, 11, 32-36.	1.5	8
48	Mechanistic Aspects of the Electrochemical Oxidation of Diethyl 1,4-Dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate on a Glassy Carbon Electrode. Electroanalysis, 1999, 11, 1241-1244.	1.5	2
49	Electrooxidation of 2-Mercaptopyridine-N-oxide (Pyrithione) at Carbon Electrodes versus Mercury Electrodes. Electroanalysis, 1998, 10, 1030-1033.	1.5	4
50	Electroreduction of some pyridine carboxamides on carbon electrodes in aqueous solutions. Electroanalysis, 1997, 9, 345-349.	1.5	6
51	Electroreduction of thionicotinamide on mercury electrodes in aqueous solutions. Journal of Electroanalytical Chemistry, 1996, 402, 211-215.	1.9	5
52	A contribution to the elucidation of the reduction mechanism of thioisonicotinamide on mercury electrodes. Journal of Electroanalytical Chemistry, 1996, 417, 113-118.	1.9	4
53	Characterization of CE and CEC processes under pure kinetic conditions by linear-sweep voltammetry. Electroanalysis, 1994, 6, 1132-1135.	1.5	0
54	CEC mechanisms in the electroreduction of $\hat{l}\pm$ -dicarbonyl compounds on mercury electrodes. Journal of Electroanalytical Chemistry, 1994, 365, 71-78.	1.9	17

#	Article	IF	CITATIONS
55	Use of convolutive potential sweep voltammetry in the calculation of hydration equilibrium constants of α-dicarbonyl compounds. Journal of Electroanalytical Chemistry, 1994, 370, 183-187.	1.9	14
56	Reduction mechanisms of some α-dicarbonyl compounds in basic solutions. Journal of Electroanalytical Chemistry, 1994, 371, 215-221.	1.9	4
57	Correlations between chemical reactivity and mutagenic activity against S. typhimurium TA100 for α-dicarbonyl compounds as a proof of the mutagenic mechanism. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1994, 304, 261-264.	0.4	15
58	Contribution to the elucidation of the redox behaviour of camphorquinone—I. Mechanism of the reduction at mercury and platinum electrodes in aqueous and acetonitrile solutions. Electrochimica Acta, 1993, 38, 2209-2216.	2.6	3
59	Reduction of the pyridine ring of niazid and isoniazid on mercury electrodes. Comparison with other NAD+ model compounds. Journal of Electroanalytical Chemistry, 1993, 348, 303-315.	1.9	13
60	Investigation of the reduction of 1,2-cyclohexanedione and methylglyoxal on mercury electrodes under pure kinetic conditions by linear-sweep voltammetry. Journal of Electroanalytical Chemistry, 1993, 353, 217-224.	1.9	12
61	Contribution to the elucidation of the redox behaviour of camphorquinone—II. Voltammetric study of the rate-controlled adsorption—desorption of the product of the electrode reaction on a mercury electrode. Electrochimica Acta, 1993, 38, 2217-2222.	2.6	1
62	A contribution to the study of the structure-mutagenicity relationship for α-dicarbonyl compounds using the Ames test. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1992, 269, 301-306.	0.4	44
63	Theoretical equations for electrochemical processes preceded by concurrent first-order chemical reactions in DC polarography: Application to the study of the interaction between guanine and diacetyl. Electroanalysis, 1992, 4, 217-221.	1.5	1
64	Study of the electrochemical reduction of nicotinamide N-oxide in aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 293, 185-195.	0.3	15
65	Influence of Cellulose Characteristics on Pyrolysis Suitability. SSRN Electronic Journal, 0, , .	0.4	Ο