Yuval Rinkevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/617668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cutting into wound repair. FEBS Journal, 2022, 289, 5034-5048.	4.7	13
2	Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Delivery, 2022, 29, 214-228.	5.7	88
3	Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. International Journal of Biological Macromolecules, 2022, 202, 657-670.	7.5	42
4	States and Fates of Skin Fibroblasts Revealed through Chromatin Accessibility. Journal of Investigative Dermatology, 2022, , .	0.7	0
5	Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nature Immunology, 2022, 23, 518-531.	14.5	37
6	Genital Wound Repair and Scarring. Medical Sciences (Basel, Switzerland), 2022, 10, 23.	2.9	2
7	Visualizing Scar Development Using SCAD Assay - An Ex-situ Skin Scarring Assay. Journal of Visualized Experiments, 2022, , .	0.3	0
8	Transcriptome landscapes that signify Botrylloides leachi (Ascidiacea) torpor states. Developmental Biology, 2022, 490, 22-36.	2.0	5
9	Connexin43 gap junction drives fascia mobilization and repair of deep skin wounds. Matrix Biology, 2021, 97, 58-71.	3.6	26
10	Fibroblasts as confederates of the immune system. Immunological Reviews, 2021, 302, 147-162.	6.0	58
11	Furnishing Wound Repair by the Subcutaneous Fascia. International Journal of Molecular Sciences, 2021, 22, 9006.	4.1	13
12	Converting fibroblastic fates leads to wound healing without scar. Signal Transduction and Targeted Therapy, 2021, 6, 332.	17.1	6
13	Epidermal-Derived Hedgehog Signaling Drives Mesenchymal Proliferation during Digit Tip Regeneration. Journal of Clinical Medicine, 2021, 10, 4261.	2.4	1
14	Distinct fibroblasts in scars and regeneration. Current Opinion in Genetics and Development, 2021, 70, 7-14.	3.3	17
15	Employing marine invertebrate cell culture media for isolation and cultivation of thraustochytrids. Botanica Marina, 2021, 64, 447-454.	1.2	4
16	Local and transient inhibition of p21 expression ameliorates ageâ€related delayed wound healing. Wound Repair and Regeneration, 2020, 28, 49-60.	3.0	26
17	Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nature Communications, 2020, 11, 5653.	12.8	66
18	Post-surgical adhesions are triggered by calcium-dependent membrane bridges between mesothelial surfaces. Nature Communications, 2020, 11, 3068.	12.8	42

YUVAL RINKEVICH

#	Article	IF	CITATIONS
19	Scars or Regeneration?—Dermal Fibroblasts as Drivers of Diverse Skin Wound Responses. International Journal of Molecular Sciences, 2020, 21, 617.	4.1	76
20	Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation. Blood Advances, 2019, 3, 2713-2721.	5.2	25
21	Patch repair of deep wounds by mobilized fascia. Nature, 2019, 576, 287-292.	27.8	129
22	Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring. Nature Cell Biology, 2018, 20, 422-431.	10.3	119
23	Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers. Science Translational Medicine, 2018, 10, .	12.4	70
24	Mesothelial to mesenchyme transition as a major developmental and pathological player in trunk organs and their cavities. Communications Biology, 2018, 1, 170.	4.4	50
25	Defining Skin Fibroblastic Cell Types Beyond CD90. Frontiers in Cell and Developmental Biology, 2018, 6, 133.	3.7	32
26	Partial Lobular Hepatectomy: A Surgical Model for Morphologic Liver Regeneration. Journal of Visualized Experiments, 2018, , .	0.3	1
27	Localized hepatic lobular regeneration by central-vein–associated lineage-restricted progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3654-3659.	7.1	8
28	Dynamic Patterns of Clonal Evolution in Tumor Vasculature Underlie Alterations in Lymphocyte–Endothelial Recognition to Foster Tumor Immune Escape. Cancer Research, 2016, 76, 1348-1353.	0.9	23
29	Denervation of Mouse Lower Hind Limb by Sciatic and Femoral Nerve Transection. Bio-protocol, 2016, 6, .	0.4	1
30	A conditional mouse model of malignant pleural mesothelioma. , 2016, , .		0
31	<i>En1</i> fibroblasts and melanoma. Melanoma Management, 2015, 2, 191-192.	O.5	1
32	Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science, 2015, 348, aaa2151.	12.6	520
33	The use of lineage tracing to study kidney injury and regeneration. Nature Reviews Nephrology, 2015, 11, 420-431.	9.6	50
34	Injuries to appendage extremities and digit tips: A clinical and cellular update. Developmental Dynamics, 2015, 244, 641-650.	1.8	16
35	Live Fibroblast Harvest Reveals Surface Marker Shift <i>In Vitro</i> . Tissue Engineering - Part C: Methods, 2015, 21, 314-321.	2.1	26
36	Function and Origin of a Fibroblast Lineage Contributing to Dermal Development, Cutaneous Scarring, and Cancer Stroma. Journal of Surgical Research, 2014, 186, 689.	1.6	0

Yuval Rinkevich

#	Article	IF	CITATIONS
37	Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9846-9851.	7.1	73
38	Identification and Targeted Inhibition of a Fibroblast Lineage Responsible for Skin Scarring and Cancer Stroma. Journal of the American College of Surgeons, 2014, 219, S84-S85.	0.5	0
39	InÂVivo Clonal Analysis Reveals Lineage-Restricted Progenitor Characteristics in Mammalian Kidney Development, Maintenance, and Regeneration. Cell Reports, 2014, 7, 1270-1283.	6.4	199
40	Repeated, Long-Term Cycling of Putative Stem Cells between Niches in a Basal Chordate. Developmental Cell, 2013, 24, 76-88.	7.0	98
41	The "Stars and Stripes―Metaphor for Animal Regeneration-Elucidating Two Fundamental Strategies along a Continuum. Cells, 2013, 2, 1-18.	4.1	11
42	Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nature Cell Biology, 2012, 14, 1251-1260.	10.3	158
43	Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nature Biotechnology, 2012, 30, 531-542.	17.5	102
44	Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature, 2011, 476, 409-413.	27.8	350
45	Piwi positive cells that line the vasculature epithelium, underlie whole body regeneration in a basal chordate. Developmental Biology, 2010, 345, 94-104.	2.0	89
46	Vasa and the germ line lineage in a colonial urochordate. Developmental Biology, 2009, 331, 113-128.	2.0	68
47	Stem Cells in Aquatic Invertebrates: Common Premises and Emerging Unique Themes. , 2009, , 61-103.		12
48	Cell signaling and transcription factor genes expressed during whole body regeneration in a colonial chordate. BMC Developmental Biology, 2008, 8, 100.	2.1	22
49	Identification of the Endostyle as a Stem Cell Niche in a Colonial Chordate. Cell Stem Cell, 2008, 3, 456-464.	11.1	86
50	Systemic Bud Induction and Retinoic Acid Signaling Underlie Whole Body Regeneration in the Urochordate Botrylloides leachi. PLoS Biology, 2007, 5, e71.	5.6	90
51	Urochordate whole body regeneration inaugurates a diverse innate immune signaling profile. Developmental Biology, 2007, 312, 131-146.	2.0	38
52	Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Developmental Dynamics, 2004, 231, 489-502.	1.8	276