
Ronald J Stouffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6176358/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are two modes of thermohaline circulation stable?. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 51, 400.	1.7	78
2	The rÃ1e of thermohaline circulation in climate. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 91.	1.6	9
3	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	7.1	236
4	Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150â€Year, and Longer Simulations. Geophysical Research Letters, 2020, 47, e2020GL088852.	4.0	16
5	Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 2020, 6, eaba1981.	10.3	321
6	The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 2019, 11, 3167-3211.	3.8	195
7	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
8	Big Jump of Record Warm Global Mean Surface Temperature in 2014–2016 Related to Unusually Large Oceanic Heat Releases. Geophysical Research Letters, 2018, 45, 1069-1078.	4.0	45
9	Change in future climate due to Antarctic meltwater. Nature, 2018, 564, 53-58.	27.8	189
10	Role of Ocean Model Formulation in Climate Response Uncertainty. Journal of Climate, 2018, 31, 9313-9333.	3.2	9
11	The Mechanistic Role of the Central American Seaway in a GFDL Earth System Model. Part 1: Impacts on Global Ocean Mean State and Circulation. Paleoceanography and Paleoclimatology, 2018, 33, 840-859.	2.9	7
12	Assessing temperature pattern projections made in 1989. Nature Climate Change, 2017, 7, 163-165.	18.8	34
13	Impact of Mountains on Tropical Circulation in Two Earth System Models. Journal of Climate, 2017, 30, 4149-4163.	3.2	13
14	Temperature and Precipitation Variance in CMIP5 Simulations and Paleoclimate Records of the Last Millennium. Journal of Climate, 2017, 30, 8885-8912.	3.2	33
15	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	3.6	223
16	Towards improved and more routine Earth system model evaluation in CMIP. Earth System Dynamics, 2016, 7, 813-830.	7.1	74
17	Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 2016, 9, 1937-1958.	3.6	5,303
18	Industrial-era global ocean heat uptake doubles in recent decades. Nature Climate Change, 2016, 6, 394-398.	18.8	127

#	Article	IF	CITATIONS
19	On Critiques of "Stationarity is Dead: Whither Water Management?― Water Resources Research, 2015, 51, 7785-7789.	4.2	204
20	Contrasting Local versus Regional Effects of Land-Use-Change-Induced Heterogeneity on Historical Climate: Analysis with the GFDL Earth System Model. Journal of Climate, 2015, 28, 5448-5469.	3.2	60
21	An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies. Journal of Hydrometeorology, 2014, 15, 1739-1761.	1.9	155
22	Influence of the Atlantic Meridional Overturning Circulation on the monsoon rainfall and carbon balance of the American tropics. Geophysical Research Letters, 2014, 41, 146-151.	4.0	34
23	Influence of Ocean and Atmosphere Components on Simulated Climate Sensitivities. Journal of Climate, 2013, 26, 231-245.	3.2	30
24	Reductions in labour capacity from heat stress under climate warming. Nature Climate Change, 2013, 3, 563-566.	18.8	407
25	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics*. Journal of Climate, 2013, 26, 2247-2267.	3.2	540
26	Sensitivity of Twenty-First-Century Global-Mean Steric Sea Level Rise to Ocean Model Formulation. Journal of Climate, 2013, 26, 2947-2956.	3.2	25
27	Northern High-Latitude Heat Budget Decomposition and Transient Warming. Journal of Climate, 2013, 26, 609-621.	3.2	66
28	Historical warming reduced due to enhanced land carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16730-16735.	7.1	88
29	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 2012, 25, 6646-6665.	3.2	972
30	Future impact of today's choices. Nature Climate Change, 2012, 2, 397-398.	18.8	2
31	An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 2012, 93, 485-498.	3.3	11,443
32	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	3.2	272
33	Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nature Geoscience, 2011, 4, 524-528.	12.9	81
34	Time Scales of Terrestrial Carbon Response Related to Land-Use Application: Implications for Initializing an Earth System Model. Earth Interactions, 2011, 15, 1-16.	1.5	9
35	The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 2011, 24, 3484-3519.	3.2	887
36	The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change, 2010, 103, 619-625.	3.6	104

#	Article	IF	CITATIONS
37	The next generation of scenarios for climate change research and assessment. Nature, 2010, 463, 747-756.	27.8	5,299
38	Evaluating the Uncertainty Induced by the Virtual Salt Flux Assumption in Climate Simulations and Future Projections. Journal of Climate, 2010, 23, 80-96.	3.2	32
39	Spatial Variability of Sea Level Rise in Twenty-First Century Projections. Journal of Climate, 2010, 23, 4585-4607.	3.2	184
40	Decadal Prediction. Bulletin of the American Meteorological Society, 2009, 90, 1467-1486.	3.3	662
41	Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience, 2009, 2, 262-266.	12.9	307
42	Stationarity Is Dead: Whither Water Management?. Science, 2008, 319, 573-574.	12.6	3,381
43	Comparison of the Stability of the Atlantic Thermohaline Circulation in Two Coupled Atmosphere–Ocean General Circulation Models. Journal of Climate, 2007, 20, 4293-4315.	3.2	42
44	Modeled Impact of Anthropogenic Land Cover Change on Climate. Journal of Climate, 2007, 20, 3621-3634.	3.2	166
45	Climate Response to External Sources of Freshwater: North Atlantic versus the Southern Ocean. Journal of Climate, 2007, 20, 436-448.	3.2	124
46	THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 2007, 88, 1383-1394.	3.3	2,484
47	Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. Journal of Geophysical Research, 2006, 111, .	3.3	199
48	Temperature trends at the surface and in the troposphere. Journal of Geophysical Research, 2006, 111, .	3.3	56
49	Importance of oceanic heat uptake in transient climate change. Geophysical Research Letters, 2006, 33, .	4.0	19
50	GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation. Journal of Climate, 2006, 19, 675-697.	3.2	269
51	The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean. Journal of Climate, 2006, 19, 6382-6390.	3.2	255
52	Intercomparison of the Southern Ocean Circulations in IPCC Coupled Model Control Simulations. Journal of Climate, 2006, 19, 4560-4575.	3.2	134
53	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	3.2	1,431
54	Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Climate Dynamics, 2005, 24, 325-346.	3.8	133

#	Article	IF	CITATIONS
55	Is there a simple bi-polar ocean seesaw?. Clobal and Planetary Change, 2005, 49, 19-27.	3.5	23
56	Time Scales of Climate Response. Journal of Climate, 2004, 17, 209-217.	3.2	133
57	Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	96
58	A comparison of climate change simulations produced by two GFDL coupled climate models. Global and Planetary Change, 2003, 37, 81-102.	3.5	37
59	The Role of Climate Sensitivity and Ocean Heat Uptake on AOGCM Transient Temperature Response. Journal of Climate, 2002, 15, 124-130.	3.2	184
60	Comparison of palaeoclimate simulations enhances confidence in models. Eos, 2002, 83, 447.	0.1	58
61	Committed warming and its implications for climate change. Geophysical Research Letters, 2001, 28, 1535-1538.	4.0	61
62	A coupled model study of the Last Glacial Maximum: Was part of the North Atlantic relatively warm?. Geophysical Research Letters, 2001, 28, 1571-1574.	4.0	106
63	Projection of Climate Change onto Modes of Atmospheric Variability. Journal of Climate, 2001, 14, 3551-3565.	3.2	56
64	An abrupt climate event in a coupled ocean–atmosphere simulation without external forcing. Nature, 2001, 409, 171-175.	27.8	67
65	Variability of Deep-Ocean Mass Transport: Spectral Shapes and Spatial Scales. Journal of Climate, 2000, 13, 1916-1935.	3.2	17
66	A Comparison of Surface Air Temperature Variability in Three 1000-Yr Coupled Ocean–Atmosphere Model Integrations. Journal of Climate, 2000, 13, 513-537.	3.2	62
67	The Coupled Model Intercomparison Project (CMIP). Bulletin of the American Meteorological Society, 2000, 81, 313-318.	3.3	381
68	Study of abrupt climate change by a coupled ocean–atmosphere model. Quaternary Science Reviews, 2000, 19, 285-299.	3.0	88
69	The rÃ1e of thermohaline circulation in climate. Tellus, Series A: Dynamic Meteorology and Oceanography, 1999, 51, 91-109.	1.7	22
70	Global Warming and Northern Hemisphere Sea Ice Extent. Science, 1999, 286, 1934-1937.	12.6	345
71	The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM Climate Change Experiment. Geophysical Research Letters, 1999, 26, 2749-2752.	4.0	83
72	Response of a Coupled Ocean–Atmosphere Model to Increasing Atmospheric Carbon Dioxide: Sensitivity to the Rate of Increase. Journal of Climate, 1999, 12, 2224-2237.	3.2	146

#	Article	IF	CITATIONS
73	Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 1998, 393, 245-249.	27.8	814
74	Intercomparison makes for a better climate model. Eos, 1997, 78, 445.	0.1	81
75	Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophysical Research Letters, 1997, 24, 257-260.	4.0	152
76	Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas Event. Paleoceanography, 1997, 12, 321-336.	3.0	300
77	Examining a coupled climate model using CFC-11 as an ocean tracer. Geophysical Research Letters, 1996, 23, 1957-1960.	4.0	30
78	vertical patterns of free and forced climate variations. Geophysical Research Letters, 1996, 23, 1801-1804.	4.0	20
79	Low-Frequency Variability of Surface Air Temperature in a 1000-Year Integration of a Coupled Atmosphere-Ocean-Land Surface Model. Journal of Climate, 1996, 9, 376-393.	3.2	199
80	Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 1995, 378, 165-167.	27.8	447
81	Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide. Journal of Climate, 1994, 7, 5-23.	3.2	458
82	Century-scale effects of increased atmospheric CO2 on the ocean–atmosphere system. Nature, 1993, 364, 215-218.	27.8	466
83	Sensitivity of a global climate model to an increase of CO ₂ concentration in the atmosphere. Journal of Geophysical Research, 1980, 85, 5529-5554.	3.3	874
84	A CO2-climate sensitivity study with a mathematical model of the global climate. Nature, 1979, 282, 491-493.	27.8	127