Jan M Rabaey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/617558/publications.pdf

Version: 2024-02-01

279798 243625 4,171 65 23 44 citations h-index g-index papers 65 65 65 3711 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Generalized Key-Value Memory to Flexibly Adjust Redundancy in Memory-Augmented Networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10993-10998.	11.3	4
2	Impact of Forward Body-Biasing on Ultra-Low Voltage Switched-Capacitor RF Power Amplifier in 28 nm FD-SOI. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 50-54.	3.0	4
3	Surface-Mounted Parallel-Plate Coupler for Cylindric Dielectric Waveguides. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2098-2107.	4.6	1
4	A Sub-100- $\hat{l}\frac{1}{4}$ W 0.1-to-27-Mb/s Pulse-Based Digital Transmitter for the Human Intranet in 28-nm FD-SOI CMOS. IEEE Journal of Solid-State Circuits, 2022, 57, 1409-1420.	5 . 4	5
5	Analysis of Ultralow Power Radio Frequency Beamforming Using Transmission-Line Transformers and Tunable Passives. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2473-2488.	4.6	2
6	A Highly Energy-Efficient Hyperdimensional Computing Processor for Biosignal Classification. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 524-534.	4.0	4
7	On the Role of Hyperdimensional Computing for Behavioral Prioritization in Reactive Robot Navigation Tasks. , 2022, , .		4
8	Efficient emotion recognition using hyperdimensional computing with combinatorial channel encoding and cellular automata. Brain Informatics, 2022, 9, .	3.0	8
9	A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nature Electronics, 2021, 4, 54-63.	26.0	317
10	Analyzing the Performance of WBAN Links during Physical Activity Using Real Multi-Band Sensor Nodes. Applied Sciences (Switzerland), 2021, 11, 2920.	2.5	5
11	Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional Computing. , 2021, , .		7
12	Architecting the Human Intranet. , 2021, , .		1
13	Architecting the Human Intranet. , 2021, , .		O
14	Hyperdimensional Computing for Blind and One-Shot Classification of EEG Error-Related Potentials. Mobile Networks and Applications, 2020, 25, 1958-1969.	3.3	30
15	Human-Centric Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 3-11.	3.1	11
16	Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Scientific Reports, 2020, 10, 16543.	3.3	54
17	Energy Efficient Heartbeat-Based MAC Protocol for WBAN Employing Body Coupled Communication. IEEE Access, 2020, 8, 182966-182983.	4.2	12
18	Towards Wireless Flexible Printed Wearable Sensors. , 2019, , .		2

#	Article	IF	CITATIONS
19	A Programmable Hyper-Dimensional Processor Architecture for Human-Centric IoT. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 439-452.	3.6	40
20	A 200-Mb/s Energy Efficient Transcranial Transmitter Using Inductive Coupling. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 435-443.	4.0	13
21	Towards Wireless Flexible Printed Wearable Sensors. , 2019, , .		0
22	Wireless Power Transfer to Randomly Distributed Implants via Homogeneous Magnetic Fields., 2019,,.		1
23	A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nature Biomedical Engineering, 2019, 3, 15-26.	22.5	164
24	Ultralow-Power Radio Frequency Beamformer Using Transmission-Line Transformers and Tunable Passives. IEEE Microwave and Wireless Components Letters, 2019, 29, 158-160.	3.2	3
25	Efficient Biosignal Processing Using Hyperdimensional Computing: Network Templates for Combined Learning and Classification of ExG Signals. Proceedings of the IEEE, 2019, 107, 123-143.	21.3	82
26	Capacitive Body-Coupled Communication in the 400–500ÂMHz Frequency Band. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 218-235.	0.3	7
27	Classification and Recall With Binary Hyperdimensional Computing: Tradeoffs in Choice of Density and Mapping Characteristics. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 5880-5898.	11.3	64
28	Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study. , $2018, \dots$		84
29	A Dual-Resolution Wavelet-Based Energy Detection Spectrum Sensing for UWB-Based Cognitive Radios. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 2279-2292.	5.4	19
30	A 2.7-\$mu\$ W Neuromodulation AFE With 200 mV _{pp} Differential-Mode Stimulus Artifact Canceler Including On-Chip LMS Adaptation. IEEE Solid-State Circuits Letters, 2018, 1, 194-197.	2.0	9
31	A Comparative Study of On-Body Radio-Frequency Links in the 420 MHz–2.4 GHz Range. Sensors, 2018, 18, 4165.	3.8	23
32	Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D Integration. IEEE Journal of Solid-State Circuits, 2018, 53, 3183-3196.	5.4	49
33	Isolator-Less Near-Field RFID Reader for Sub-Cranial Powering/Data Link of Millimeter-Sized Implants. IEEE Journal of Solid-State Circuits, 2018, 53, 2032-2042.	5.4	7
34	A 3.1–10.6-GHz 57-Bands CMOS Frequency Synthesizer for UWB-Based Cognitive Radios. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 4134-4146.	4.6	18
35	A 213-nW/Channel Analog Euclidian Vector Normalizer. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1909-1913.	3.0	0
36	An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier. , 2018, , .		65

#	Article	IF	Citations
37	A Neuro-Inspired Spike Pattern Classifier. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 555-565.	3.6	2
38	Far-Field RF Wireless Power Transfer with Blind Adaptive Beamforming for Internet of Things Devices. IEEE Access, 2017, 5, 1743-1752.	4.2	91
39	Optimized Design of a Human Intranet Network. , 2017, , .		8
40	High-Dimensional Computing as a Nanoscalable Paradigm. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2508-2521.	5.4	92
41	Reliable Next-Generation Cortical Interfaces for Chronic Brain–Machine Interfaces and Neuroscience. Proceedings of the IEEE, 2017, 105, 73-82.	21.3	44
42	A Bio-Inspired Analog Gas Sensing Front End. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2611-2623.	5.4	12
43	An implantable $700^{1}\!\!/\!4$ W 64-channel neuromodulation IC for simultaneous recording and stimulation with rapid artifact recovery. , 2017, , .		39
44	Blind parallel interrogation of ultrasonic neural dust motes based on canonical polyadic decomposition: A simulation study. , 2017, , .		0
45	Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language recognition. , $2016, , .$		95
46	Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust. Neuron, 2016, 91, 529-539.	8.1	417
47	A Robust and Energy-Efficient Classifier Using Brain-Inspired Hyperdimensional Computing. , 2016, , .		160
48	Hyperdimensional biosignal processing: A case study for EMG-based hand gesture recognition., 2016,,.		103
49	The Human IntranetWhere Swarms and Humans Meet. IEEE Pervasive Computing, 2015, 14, 78-83.	1.3	25
50	A 4.78 mm 2 Fully-Integrated Neuromodulation SoC Combining 64 Acquisition Channels With Digital Compression and Simultaneous Dual Stimulation. IEEE Journal of Solid-State Circuits, 2015, 50, 1038-1047.	5.4	75
51	A Minimally Invasive 64-Channel Wireless μECoG Implant. IEEE Journal of Solid-State Circuits, 2015, 50, 344-359.	5.4	295
52	Model validation of untethered, ultrasonic neural dust motes for cortical recording. Journal of Neuroscience Methods, 2015, 244, 114-122.	2,5	140
53	Design and optimization of mm-size implantable and wearable on-body antennas for biomedical systems. , $2014, \ldots$		13
54	Electromagnetic modelling and measurement of antennas for wireless brain-machine interface systems. , 2013, , .		5

#	Article	lF	CITATIONS
55	The path toward energy-efficient inference engine architectures on scaled and beyond-CMOS fabrics. , 2013, , .		O
56	A Fully-Integrated, Miniaturized (0.125 mm \hat{A}^2) 10.5 $\hat{A}\mu W$ Wireless Neural Sensor. IEEE Journal of Solid-State Circuits, 2013, 48, 960-970.	5.4	154
57	A 0.013 ${\mbox {mm}}^{2}$, 5 ${\mbox {W}}$, DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply. IEEE Journal of Solid-State Circuits, 2012, 47, 232-243.	5. 4	285
58	A Fully Integrated, 290 pJ/bit UWB Dual-Mode Transceiver for cm-Range Wireless Interconnects. IEEE Journal of Solid-State Circuits, 2012, 47, 586-598.	5.4	30
59	An information-theoretic framework for joint architectural and circuit level optimization for olfactory recognition processing. , 2011, , .		0
60	Ultralow-Power Design in Near-Threshold Region. Proceedings of the IEEE, 2010, 98, 237-252.	21.3	309
61	Low Power Design Essentials. Integrated Circuits and Systems, 2009, , .	0.2	308
62	A 52 \$mu\$W Wake-Up Receiver With \$-\$72 dBm Sensitivity Using an Uncertain-IF Architecture. IEEE Journal of Solid-State Circuits, 2009, 44, 269-280.	5.4	253
63	Content Management and Replication in the SNSP: A Distributed Service-Based OS for Sensor Networks. , 2008, , .		1
64	Low-Power Successive Approximation Converter With 0.5 V Supply in 90 nm CMOS. IEEE Journal of Solid-State Circuits, 2007, 42, 2348-2356.	5.4	53
65	Design Methodology of a Low-Energy Reconfigurable Single-Chip DSP System. Journal of Signal Processing Systems, 2001, 28, 47-61.	1.0	43