
Murray Epstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The intersection of mineralocorticoid receptor activation and the FGF23–Klotho cascade: a duopoly that promotes renal and cardiovascular injury. Nephrology Dialysis Transplantation, 2022, 37, 211-221.	0.7	9
2	Hyperkalemia with Mineralocorticoid Receptor Antagonist Use in People with CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 455-457.	4.5	7
3	A Podcast Discussing Aldosterone and Mineralocorticoid Receptor Antagonists in 2021: A Paradigm Shift. Diabetes Therapy, 2022, 13, 583-588.	2.5	8
4	Aldosterone and mineralocorticoid receptor signaling as determinants of cardiovascular and renal injury: an extraordinary paradigm shift. Kidney International Supplements, 2022, 12, 1-6.	14.2	6
5	The innate immune response, microenvironment proteinases, and the COVID-19 pandemic: pathophysiologic mechanisms and emerging therapeutic targets. Kidney International Supplements, 2022, 12, 48-62.	14.2	10
6	Considerations for the future: current and future treatment paradigms with mineralocorticoid receptor antagonists—unmet needs and underserved patient cohorts. Kidney International Supplements, 2022, 12, 69-75.	14.2	7
7	Microalbuminuria Constitutes a Clinical Action Item for Clinicians in 2021. American Journal of Medicine, 2022, 135, 576-580.	1.5	5
8	The Decline of the Experimental Paradigm During the COVID-19 Pandemic: A Template for the Future. American Journal of Medicine, 2021, 134, 166-175.	1.5	11
9	Aldosterone and Mineralocorticoid Receptor Signaling as Determinants of Cardiovascular and Renal Injury: From Hans Selye to the Present. American Journal of Nephrology, 2021, 52, 209-216.	3.1	41
10	Re: "Mortality Attributed to COVID-19 in High-Altitude Populations―by Woolcott and Bergman. High Altitude Medicine and Biology, 2021, 22, 102-104.	0.9	5
11	Renin-Angiotensin-Aldosterone System Inhibition and Mineralocorticoid ReceptorÂAntagonists: The Overriding Importance of Enablers and Dampers. Kidney International Reports, 2021, 6, 869-871.	0.8	4
12	Hepatorenal syndrome: a historical appraisal of its origins and conceptual evolution. Kidney International, 2021, 99, 1321-1330.	5.2	4
13	Josep Trueta and Renal Sympathetic Activation. European Heart Journal, 2020, 41, 4543-4545.	2.2	0
14	Avoiding the termination of ACTT. European Heart Journal, 2020, 41, 4468-4470.	2.2	3
15	Norman K. Hollenberg. Hypertension, 2020, 76, 288-290.	2.7	0
16	Renin-Angiotensin System Blockers and the COVID-19 Pandemic. Hypertension, 2020, 75, 1382-1385.	2.7	412
17	Defining the Optimal Dialysis Regimen for Improving Left Ventricular Structure and Function: An Urgent Need. Journal of Cardiac Failure, 2020, 26, 492-493.	1.7	0
18	Norman K. Hollenberg, MD PhD (1936–2020). European Heart Journal, 2020, 41, 1540-1541.	2.2	0

#	Article	IF	CITATIONS
19	A propitious time for initiating clinical trials in patients with heart failure with reduced ejection fraction and an estimated glomerular filtration rate <30 mL/min with an mineralocorticoid receptor antagonist and a K+binder: â€~the forbidden fruit'. European Heart Journal, 2016, 37, 3130-3134.	2.2	3
20	The Unappreciated Role of Extrarenal and Gut Sensors in Modulating Renal Potassium Handling: Implications for Diagnosis of Dyskalemias and Interpreting Clinical Trials. Kidney International Reports, 2016, 1, 43-56.	0.8	17
21	New approaches to hyperkalemia in patients with indications for renin angiotensin aldosterone inhibitors: Considerations for trial design and regulatory approval. International Journal of Cardiology, 2016, 216, 46-51.	1.7	20
22	Matrix Gla-Protein (MGP) Not Only Inhibits Calcification in Large Arteries But Also May Be Renoprotective: Connecting the Dots. EBioMedicine, 2016, 4, 16-17.	6.1	22
23	Recent advances in pharmacological treatments of hyperkalemia: focus on patiromer. Expert Opinion on Pharmacotherapy, 2016, 17, 1435-1448.	1.8	26
24	Hyperkalemia: current concepts and emerging therapeutic options. Kidney International Supplements, 2016, 6, 1-2.	14.2	2
25	The future for renal denervation depends on embracing the lessons learned from our previous studies. Journal of the American Society of Hypertension, 2016, 10, 396-398.	2.3	0
26	Resistant Hypertension. Hypertension, 2016, 68, 1073-1080.	2.7	12
27	Emergency management of severe hyperkalemia: Guideline for best practice and opportunities for the future. Pharmacological Research, 2016, 113, 585-591.	7.1	91
28	Hyperkalemia constitutes a constraint for implementing renin-angiotensin-aldosterone inhibition: the widening gap between mandatedÂtreatment guidelines and the real-world clinicalÂarena. Kidney International Supplements, 2016, 6, 20-28.	14.2	49
29	Potassium homeostasis and dyskalemias: theÂrespective roles of renal, extrarenal, and gutÂsensors in potassium handling. Kidney International Supplements, 2016, 6, 7-15.	14.2	13
30	Resistant Hypertension and the Pivotal Role for Mineralocorticoid Receptor Antagonists: A Clinical Update 2016. American Journal of Medicine, 2016, 129, 661-666.	1.5	27
31	Evaluation of clinical outcomes and costs based on prescribed dose level of renin-angiotensin-aldosterone system inhibitors. American Journal of Managed Care, 2016, 22, s311-s324.	1.1	12
32	Is the failure of SYMPLICITY HTN-3 trial to meet its efficacy endpoint the "end of the road―for renal denervation?. Journal of the American Society of Hypertension, 2015, 9, 140-149.	2.3	34
33	Reduction of cardiovascular risk in chronic kidney disease by mineralocorticoid receptor antagonism. Lancet Diabetes and Endocrinology,the, 2015, 3, 993-1003.	11.4	25
34	A forgotten chapter in the history of the renal circulation: the Josep Trueta and Homer Smith intellectual conflict. American Journal of Physiology - Renal Physiology, 2015, 309, F90-F97.	2.7	7
35	Evaluation of the treatment gap between clinical guidelines and the utilization of renin-angiotensin-aldosterone system inhibitors. American Journal of Managed Care, 2015, 21, S212-20.	1.1	123
36	Mineralocorticoid receptor antagonists: part of an emerging treatment paradigm for chronic kidney disease. Lancet Diabetes and Endocrinology,the, 2014, 2, 925-927.	11.4	10

#	Article	IF	CITATIONS
37	Statins in the management of dyslipidemia associated with chronic kidney disease. Nature Reviews Nephrology, 2012, 8, 214-223.	9.6	46
38	Aldosterone blockade and the mineralocorticoid receptor in the management of chronic kidney disease: current concepts and emerging treatment paradigms. Kidney International, 2012, 81, 955-968.	5.2	85
39	Hypertension and Chronic Kidney Disease Progression: Why the Suboptimal Outcomes?. American Journal of Medicine, 2012, 125, 1057-1062.	1.5	27
40	Aldosterone Blockers (Mineralocorticoid Receptor Antagonism) and Potassium-Sparing Diuretics. Journal of Clinical Hypertension, 2011, 13, 644-648.	2.0	69
41	John P. Merrill. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 2-8.	4.5	3
42	Re-examining RAS-blocking treatment regimens for abrogating progression of chronic kidney disease. Nature Clinical Practice Nephrology, 2009, 5, 12-13.	2.0	17
43	Hyperkalemia as a Constraint to Therapy With Combination Reninâ€Angiotensin System Blockade: The Elephant in the Room. Journal of Clinical Hypertension, 2009, 11, 55-60.	2.0	13
44	Narrative Review: The Emerging Clinical Implications of the Role of Aldosterone in the Metabolic Syndrome and Resistant Hypertension. Annals of Internal Medicine, 2009, 150, 776.	3.9	309
45	Resistant Hypertension: Prevalence and Evolving Concepts. Journal of Clinical Hypertension, 2007, 9, 2-6.	2.0	36
46	Atorvastatin Does Not Induce Glomerular or Tubular Dysfunction Even at High Doses. Journal of the Cardiometabolic Syndrome, 2007, 2, 163-167.	1.7	0
47	The role of aldosterone in resistant hypertension: Implications for pathogenesis and therapy. Current Hypertension Reports, 2007, 9, 98-105.	3.5	21
48	Highlights from International Congress. High Blood Pressure and Cardiovascular Prevention, 2006, 13, 61-72.	2.2	0
49	Aldosterone Blockade: An Emerging Strategy for Abrogating Progressive Renal Disease. American Journal of Medicine, 2006, 119, 912-919.	1.5	109
50	Adding spironolactone to conventional antihypertensives reduces albuminuria in patients with diabetic nephropathy. Nature Clinical Practice Nephrology, 2006, 2, 310-311.	2.0	18
51	Review: Relationship between Erythropoietin Administration and Alterations of Renin-Angiotensin-Aldosterone. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2006, 7, 135-138.	1.7	5
52	Selective Aldosterone Blockade with Eplerenone Reduces Albuminuria in Patients with Type 2 Diabetes. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 940-951.	4.5	376
53	Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors on renal function. American Journal of Kidney Diseases, 2005, 45, 2-14.	1.9	100
54	Role of Aldosterone Blockade in the Management of Hypertension and Cardiovascular Disease. , 2004, 143, 90-104.		3

#	Article	IF	CITATIONS
55	Evolving role of calcium antagonists in themanagement of hypertension. Medical Clinics of North America, 2004, 88, 149-165.	2.5	0
56	Aldosterone receptor blockade and the role of eplerenone: evolving perspectives. Nephrology Dialysis Transplantation, 2003, 18, 1984-1992.	0.7	53
57	Recent landmark clinical trials: how do they modify the therapeutic paradigm?. American Journal of Hypertension, 2002, 15, S82-S84.	2.0	9
58	Non-steroidal anti-inflammatory drugs and the continuum of renal dysfunction. Journal of Hypertension Supplement: Official Journal of the International Society of Hypertension, 2002, 20, S17-23.	0.1	20
59	Comparative Pharmacokinetics and Pharmacodynamics of Amlodipine in Hypertensive Patients with and without Type II Diabetes Mellitus. Journal of Clinical Pharmacology, 2001, 41, 1215-1224.	2.0	13
60	Aldosterone as a mediator of progressive renal disease: Pathogenetic and clinical implications. American Journal of Kidney Diseases, 2001, 37, 677-688.	1.9	140
61	Aldosterone as a Determinant of Cardiovascular and Renal Dysfunction. Journal of the Royal Society of Medicine, 2001, 94, 378-383.	2.0	56
62	Aldosterone and the hypertensive kidney: its emerging role as a mediator of progressive renal dysfunction: a paradigm shift. Journal of Hypertension, 2001, 19, 829-842.	0.5	83
63	Aldosterone as a Mediator of Progressive Renal Dysfunction: Evolving Perspectives Internal Medicine, 2001, 40, 573-583.	0.7	22
64	Lercanidipine. Heart Disease (Hagerstown, Md), 2001, 3, 398-407.	1.3	34
65	Hypertension in patients with diabetes. Postgraduate Medicine, 2000, 107, 47-60.	2.0	25
66	Hypertension in patients with diabetes. Postgraduate Medicine, 2000, 107, 53-64.	2.0	16
67	The Growing Role of Calcium Antagonists in Treating Hypertension in the Elderly. The American Journal of Geriatric Cardiology, 2000, 9, 42-48.	0.6	3
68	Preserving renal function in adults with hypertension and diabetes: A consensus approach. American Journal of Kidney Diseases, 2000, 36, 646-661.	1.9	1,314
69	Role of a Third Generation Calcium Antagonist in the Management of Hypertension*. Drugs, 1999, 57, 1-10.	10.9	16
70	The Calcium Antagonist Controversy: The Emerging Importance of Drug Formulation as a Determinant of Risk. American Journal of Cardiology, 1997, 79, 9-19.	1.6	63
71	Calcium channel blockers and hypertension: Evolving perspectives?1996. Cardiovascular Drugs and Therapy, 1997, 10, 883-891.	2.6	7
72	Disparate Effects of Calcium Antagonists on Renal Microcirculation Hypertension Research, 1996, 19, 31-36.	2.7	112

#	Article	IF	CITATIONS
73	Review. Renal Failure, 1996, 18, 813-832.	2.1	20
74	Newer Approaches to Antihypertensive Therapy. Archives of Internal Medicine, 1996, 156, 1969.	3.8	102
75	Evolving concepts in the management of hypertension. Clinical Cardiology, 1995, 18, 3-11.	1.8	29
76	Atrial Natriuretic Factor and Liver Disease. Hepatology, 1993, 17, 500-513.	7.3	46
77	Atrial natriuretic factor and liver disease. Hepatology, 1993, 17, 500-513.	7.3	6
78	Calcium Antagonists and the Kidney Tohoku Journal of Experimental Medicine, 1992, 166, 123-134.	1.2	2
79	Natriuretic Effects of Calcium Antagonists in Humans: A Review of Experimental Evidence and Clinical Data. Cardiovascular Drug Reviews, 1991, 9, 398-412.	4.1	11
80	Introduction to focused section on calcium antagonists and the kidney. Cardiovascular Drugs and Therapy, 1990, 4, 1317-1318.	2.6	0
81	Peripheral arterial vasodilation hypothesis: A proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology, 1988, 8, 1151-1157.	7.3	1,513
82	Renal eicosanoids as determinants of renal function in liver disease. Hepatology, 1987, 7, 1359-1367.	7.3	28
83	Characterization of Renal Prostaglandin E Responsiveness in Decompensated Cirrhosis: Implications for Renal Sodium Handling. Clinical Science, 1982, 63, 555-563.	4.3	49
84	Determinants of abnormal renal sodium handling in cirrhosis: a reappraisal. Scandinavian Journal of Clinical and Laboratory Investigation, 1980, 40, 689-694.	1.2	4
85	Volume as a Determinant of Plasma Aldosterone in Anephric Man*. Journal of Clinical Endocrinology and Metabolism, 1978, 46, 309-316.	3.6	8
86	Renal failure in the patient with cirrhosis. American Journal of Medicine, 1970, 49, 175-185.	1.5	452
87	Calcium Antagonists: Still Appropriate as First Line Antihypertensive Agents. American Journal of Hypertension, 0, , .	2.0	0