Christiane Funk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174773/publications.pdf

Version: 2024-02-01

81900 98798 5,200 119 39 67 citations g-index h-index papers 120 120 120 5381 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Utilization of Different Carbon Sources by Nordic Microalgae Grown Under Mixotrophic Conditions. Frontiers in Marine Science, 2022, 9, .	2.5	5
2	Expression and Purification of the Type I Metacaspase from a Cryptophyte Guillardia theta, GtMCA-I. Methods in Molecular Biology, 2022, 2447, 1-11.	0.9	0
3	Expression and Purification of the Type II Metacaspase from a Unicellular Green Alga Chlamydomonas reinhardtii. Methods in Molecular Biology, 2022, 2447, 13-20.	0.9	3
4	Improving the content of high value compounds in Nordic Desmodesmus microalgal strains. Bioresource Technology, 2022, 359, 127445.	9.6	9
5	Loss of <i>Arabidopsis</i> matrix metalloproteinaseâ€5 affects root development and root bacterial communities during drought stress. Physiologia Plantarum, 2021, 172, 1045-1058.	5.2	8
6	Abundance of metalloprotease FtsH12 modulates chloroplast development in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2021, 72, 3455-3473.	4.8	19
7	The Role of Pseudo-Orthocaspase (SyOC) of Synechocystis sp. PCC 6803 in Attenuating the Effect of Oxidative Stress. Frontiers in Microbiology, 2021, 12, 634366.	3.5	4
8	<scp>NordAqua</scp> , a Nordic Center of Excellence to develop an algaeâ€based photosynthetic production platform. Physiologia Plantarum, 2021, 173, 507-513.	5.2	7
9	The cell wall of green microalgae and its role in heavy metal removal. Physiologia Plantarum, 2021, 173, 526-535.	5.2	103
10	The FtsHi Enzymes of Arabidopsis thaliana: Pseudo-Proteases with an Important Function. International Journal of Molecular Sciences, 2021, 22, 5917.	4.1	13
11	Fate of active pharmaceutical ingredients in a northern high-rate algal pond fed with municipal wastewater. Chemosphere, 2021, 271, 129763.	8.2	28
12	Wastewater treatment by microalgae. Physiologia Plantarum, 2021, 173, 568-578.	5.2	59
13	The Plastid-Localized AtFtsHi3 Pseudo-Protease of Arabidopsis thaliana Has an Impact on Plant Growth and Drought Tolerance. Frontiers in Plant Science, 2021, 12, 694727.	3.6	5
14	Blue economy in the North: Scandinavian algal biotechnology to the rescue. Physiologia Plantarum, 2021, 173, 479-482.	5.2	4
15	Biosorption of Cd(II) by Nordic microalgae: Tolerance, kinetics and equilibrium studies. Algal Research, 2021, 59, 102471.	4.6	19
16	A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules, 2021, 11, 1860.	4.0	22
17	Cryo-XPS analysis reveals surface composition of microalgae. Applied Surface Science, 2020, 526, 146538.	6.1	30
18	Screening Suitability of Northern Hemisphere Algal Strains for Heterotrophic Cultivation and Fatty Acid Methyl Ester Production. Molecules, 2020, 25, 2107.	3.8	7

#	Article	IF	CITATIONS
19	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
20	Modeling biomass production during progressive nitrogen starvation by North Swedish green microalgae. Algal Research, 2020, 47, 101835.	4.6	27
21	Cryogenic X-ray photoelectron spectroscopy determines surface composition of algal cells and gives insights into their spontaneous sedimentation. Algal Research, 2020, 47, 101836.	4.6	14
22	DNA metabarcoding reveals microbial community dynamics in a microalgae-based municipal wastewater treatment open photobioreactor. Algal Research, 2020, 51, 102043.	4.6	27
23	Growth performance and nutrient removal of a Chlorella vulgaris-Rhizobium sp. co-culture during mixotrophic feed-batch cultivation in synthetic wastewater. Algal Research, 2019, 44, 101690.	4.6	23
24	Uptake Kinetics of Methylmercury in a Freshwater Alga Exposed to Methylmercury Complexes with Environmentally Relevant Thiols. Environmental Science & Environmentally Relevant Thiols.	10.0	23
25	Statistical Methods for Rapid Quantification of Proteins, Lipids, and Carbohydrates in Nordic Microalgal Species Using ATR–FTIR Spectroscopy. Molecules, 2019, 24, 3237.	3.8	36
26	Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis. Frontiers in Plant Science, 2019, 10, 293.	3.6	18
27	DEG10 contributes to mitochondrial proteostasis, root growth, and seed yield in Arabidopsis. Journal of Experimental Botany, 2019, 70, 5423-5436.	4.8	13
28	Use of pulsed electric field permeabilization to extract astaxanthin from the Nordic microalga Haematococcus pluvialis. Bioresource Technology, 2019, 289, 121694.	9.6	72
29	Extraâ€plastidial degradation of chlorophyll and photosystem I in tobacco leaves involving â€~senescenceâ€associated vacuoles'. Plant Journal, 2019, 99, 465-477.	5.7	15
30	Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Frontiers in Bioengineering and Biotechnology, 2019, 7, 67.	4.1	7
31	Microalgae Cultivation for the Biotransformation of Birch Wood Hydrolysate and Dairy Effluent. Catalysts, 2019, 9, 150.	3.5	15
32	Evolution and structural diversity of metacaspases. Journal of Experimental Botany, 2019, 70, 2039-2047.	4.8	27
33	Reduced expression of the proteolytically inactive FtsH members has impacts on the Darwinian fitness of Arabidopsis thaliana. Journal of Experimental Botany, 2019, 70, 2173-2184.	4.8	18
34	Elucidating the symbiotic interactions between a locally isolated microalga Chlorella vulgaris and its co-occurring bacterium Rhizobium sp. in synthetic municipal wastewater. Journal of Applied Phycology, 2019, 31, 2299-2310.	2.8	32
35	Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicology and Environmental Safety, 2019, 170, 644-656.	6.0	103
36	Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, 2019, 24, 237-249.	8.8	294

#	Article	IF	CITATIONS
37	Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a â^†PSI strain of Synechocystis sp. PCC6803. Metabolic Engineering, 2019, 52, 68-76.	7.0	14
38	Stable Accumulation of Photosystem II Requires ONE-HELIX PROTEIN1 (OHP1) of the Light Harvesting-Like Family. Plant Physiology, 2018, 176, 2277-2291.	4.8	54
39	Isolation and characterization of microalgal strains for biomass production and wastewater reclamation in Northern Sweden. Algal Research, 2018, 32, 44-53.	4.6	67
40	Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities. Photosynthesis Research, 2018, 135, 149-163.	2.9	19
41	Type III metacaspases: calciumâ€dependent activity proposes new function for the p10 domain. New Phytologist, 2018, 218, 1179-1191.	7.3	29
42	The stress-induced SCP/HLIP family of small light-harvesting-like proteins (ScpABCDE) protects Photosystem II from photoinhibitory damages in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthesis Research, 2018, 135, 103-114.	2.9	11
43	Structural and functional diversity of caspase homologues in non-metazoan organisms. Protoplasma, 2018, 255, 387-397.	2.1	44
44	Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy. Energies, 2018, 11, 664.	3.1	65
45	Subarctic microalgal strains treat wastewater and produce biomass at low temperature and short photoperiod. Algal Research, 2018, 35, 160-167.	4.6	45
46	The HhoA protease from Synechocystis sp. PCC 6803 – Novel insights into structure and activity regulation. Journal of Structural Biology, 2017, 198, 147-153.	2.8	4
47	Insights into the Cyanobacterial Deg/HtrA Proteases. Frontiers in Plant Science, 2016, 7, 694.	3.6	12
48	The PsbY protein of Arabidopsis Photosystem II is important for the redox control of cytochrome b 559. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1524-1533.	1.0	30
49	Deletion of FtsH11 protease has impact on chloroplast structure and function in <i>Arabidopsis thaliana</i> when grown under continuous light. Plant, Cell and Environment, 2016, 39, 2530-2544.	5.7	20
50	Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay. Plant Physiology, 2016, 171, 2516-2535.	4.8	54
51	Deletion of the gene family of small chlorophyll-binding proteins (ScpABCDE) offsets C/N homeostasis in Synechocystis PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 396-407.	1.0	9
52	Antibiotic Disc Assay for Synechocystis sp. PCC6803. Bio-protocol, 2016, 6, .	0.4	0
53	Proteomic approaches to identify substrates of the three Deg/HtrA proteases of the cyanobacterium Synechocystis sp. PCC 6803. Biochemical Journal, 2015, 468, 373-384.	3.7	14
54	Presence of state transitions in the cryptophyte alga <i>Guillardia theta</i> . Journal of Experimental Botany, 2015, 66, 6461-6470.	4.8	21

#	Article	IF	CITATIONS
55	Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803â€"What is New?. Molecules, 2015, 20, 14621-14637.	3.8	6
56	Inactivation of the Deg protease family in the cyanobacterium Synechocystis sp. PCC 6803 has impact on the outer cell layers. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 383-394.	3.8	13
57	Family-wide characterization of matrix metalloproteinases from <i>Arabidopsis thaliana</i> reveals their distinct proteolytic activity and cleavage site specificity. Biochemical Journal, 2014, 457, 335-346.	3.7	33
58	Metabolomic analysis of extreme freezing tolerance in Siberian spruce (<i><scp>P</scp>icea) Tj ETQq0 0 0 rgB1</i>	「/Oyerloch	2 10 Tf 50 622
59	Synergy: A Web Resource for Exploring Gene Regulation in Synechocystis sp. PCC6803. PLoS ONE, 2014, 9, e113496.	2.5	4
60	Co-expression analysis, proteomic and metabolomic study on the impact of a Deg/HtrA protease triple mutant in Synechocystis sp. PCC 6803 exposed to temperature and high light stress. Journal of Proteomics, 2013, 78, 294-311.	2.4	19
61	Psbo Degradation by Deg Proteases under Reducing Conditions. Advanced Topics in Science and Technology in China, 2013, , 599-602.	0.1	1
62	Refolding and Enzyme Kinetic Studies on the Ferrochelatase of the Cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE, 2013, 8, e55569.	2.5	7
63	The search for new chlorophyll-binding proteins in the cyanobacterium Synechocystis sp. PCC 6803. Journal of Biotechnology, 2012, 162, 124-133.	3.8	3
64	The Extended Light-Harvesting Complex (LHC) Protein Superfamily: Classification and Evolutionary Dynamics. Advances in Photosynthesis and Respiration, 2012, , 265-284.	1.0	24
65	FtsH proteases located in the plant chloroplast. Physiologia Plantarum, 2012, 145, 203-214.	5.2	105
66	Senescenceâ€associated proteases in plants. Physiologia Plantarum, 2012, 145, 130-139.	5.2	170
67	Matrix metalloproteinases in plants: a brief overview. Physiologia Plantarum, 2012, 145, 196-202.	5.2	45
68	Photosystem II, a growing complex: Updates on newly discovered components and low molecular mass proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 13-25.	1.0	132
69	Arabidopsisplants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biology, 2012, 12, 6.	3.6	110
70	Degradation of PsbO by the Deg Protease HhoA Is Thioredoxin Dependent. PLoS ONE, 2012, 7, e45713.	2.5	21
71	Extraordinary μs–ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1880-1890.	2.3	20
72	Crystal structure of the TL29 protein from Arabidopsis thaliana: An APX homolog without peroxidase activity. Journal of Structural Biology, 2011, 176, 24-31.	2.8	16

#	Article	IF	CITATIONS
73	Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism. Biochemical Journal, 2011, 435, 733-742.	3.7	28
74	The PsbW protein stabilizes the supramolecular organization of photosystem $\hat{s}f$ in higher plants. Plant Journal, 2011, 65, 368-381.	5.7	73
75	Fitness analyses of <i>Arabidopsis thaliana</i> mutants depleted of FtsH metalloproteases and characterization of three FtsH6 deletion mutants exposed to high light stress, senescence and chilling. New Phytologist, 2011, 191, 449-458.	7.3	56
76	High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 841-846.	1.0	23
77	The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: Their involvement in chlorophyll biogenesis for Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1143-1151.	1.0	38
78	Antisense Inhibition of the PsbX Protein Affects PSII Integrity in the Higher Plant Arabidopsis thaliana. Plant and Cell Physiology, 2009, 50, 191-202.	3.1	25
79	The TL29 Protein is Lumen Located, Associated with PSII and Not an Ascorbate Peroxidase. Plant and Cell Physiology, 2009, 50, 1898-1910.	3.1	40
80	Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with Photosystem II. Photosynthesis Research, 2008, 95, 135-145.	2.9	49
81	The small CAB-like proteins of Synechocystis sp. PCC 6803 bind chlorophyll. Photosynthesis Research, 2008, 98, 479-488.	2.9	25
82	ELIP/CAB-Type Proteins Associated with Photosystem II During Normal Growth of Cyanobacterium Synechocystis sp. PCC 6803., 2008, , 723-727.		0
83	Localization of the Small CAB-like Proteins in Photosystem II. Journal of Biological Chemistry, 2007, 282, 267-276.	3.4	86
84	Photoactive Protochlorophyllide Regeneration in Cotyledons and Leaves from Higher Plantsâ€Â¶. Photochemistry and Photobiology, 2007, 72, 660-668.	2.5	0
85	The PsbP-like protein (sll1418) of Synechocystis sp. PCC 6803 stabilises the donor side of Photosystem II. Photosynthesis Research, 2007, 93, 101-109.	2.9	32
86	Excitation energy partitioning and quenching during cold acclimation in Scots pine. Tree Physiology, 2006, 26, 325-336.	3.1	54
87	Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiologia Plantarum, 2006, 127, 670-680.	5. 2	78
88	Protease gene families in Populus and Arabidopsis. BMC Plant Biology, 2006, 6, 30.	3.6	129
89	Functional analysis of the PsbP-like protein (sll1418) in Synechocystis sp. PCC 6803. Photosynthesis Research, 2005, 84, 257-262.	2.9	36
90	AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13699-13704.	7.1	135

#	Article	IF	Citations
91	Degradation of the main Photosystem II light-harvesting complex. Photochemical and Photobiological Sciences, 2005, 4, 1065.	2.9	15
92	A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biology, 2005, 6, R34.	9.6	71
93	Multiple Deletions of Small Cab-like Proteins in the Cyanobacterium Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2004, 279, 27971-27979.	3.4	91
94	Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology, 2004, 10, 995-1008.	9.5	197
95	Hole burning study of cyanobacterial Photosystem II complexes differing in the content of small putative chlorophyll-binding proteins. Journal of Luminescence, 2004, 107, 230-235.	3.1	2
96	Isolation of Outer Membrane of Synechocystis sp. PCC 6803 and Its Proteomic Characterization. Molecular and Cellular Proteomics, 2004, 3, 586-595.	3.8	115
97	The family of Deg/HtrA proteases: from Escherichia coli to Arabidopsis. Physiologia Plantarum, 2003, 119, 337-346.	5.2	31
98	Expression of the early light-induced protein but not the PsbS protein is influenced by low temperature and depends on the developmental stage of the plant in field-grown pea cultivars. Plant, Cell and Environment, 2003, 26, 245-253.	5.7	35
99	Changes in macromolecular allocation in nondividing algal symbionts allow for photosynthetic acclimation in the lichen Lobaria pulmonaria. New Phytologist, 2003, 159, 709-718.	7.3	32
100	Proteome Map of the Chloroplast Lumen of Arabidopsis thaliana. Journal of Biological Chemistry, 2002, 277, 8354-8365.	3.4	388
101	Novel approach reveals localisation and assembly pathway of the PsbS and PsbW proteins into the photosystem II dimer. FEBS Letters, 2002, 513, 217-222.	2.8	60
102	Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Molecular Biology, 2002, 49, 149-160.	3.9	81
103	Amino acid deletions in the cytosolic domains of the chlorophyll a-binding protein CP47 slow Q(A)-oxidation and/or prevent the assembly of photosystem II. Plant Molecular Biology, 2002, 50, 563-572.	3.9	3
104	D1′ centers are less efficient than normal photosystem II centers. FEBS Letters, 2001, 505, 113-117.	2.8	9
105	The PsbS Protein: A Cab-protein with a Function of Its Own. Advances in Photosynthesis and Respiration, 2001, , 453-467.	1.0	16
106	Functional analysis of the PsbX protein by deletion of the corresponding gene in Synechocystis sp. PCC 6803. Plant Molecular Biology, 2000, 44, 815-827.	3.9	27
107	Photoactive Protochlorophyllide Regeneration in Cotyledons and Leaves from Higher Plantsâ€Â¶. Photochemistry and Photobiology, 2000, 72, 660.	2.5	24
108	Supermolecular structure of photosystem II and location of the PsbS protein. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1337-1344.	4.0	66

#	Article	IF	CITATIONS
109	A Cyanobacterial Gene Family Coding for Single-Helix Proteins Resembling Part of the Light-Harvesting Proteins from Higher Plantsâ€. Biochemistry, 1999, 38, 9397-9404.	2.5	151
110	Engineering of N-terminal threonines in the D1 protein impairs photosystem II energy transfer in Synechocystis 6803. FEBS Letters, 1998, 436, 434-438.	2.8	10
111	Title is missing!. Photosynthesis Research, 1997, 54, 227-236.	2.9	43
112	Developmental regulation of the PsbS gene expression in spinach seedlings: the role of phytochrome. Plant Molecular Biology, 1996, 31, 793-802.	3.9	12
113	The Nuclear-encoded Chlorophyll-binding Photosystem II-S Protein Is Stable in the Absence of Pigments. Journal of Biological Chemistry, 1995, 270, 30141-30147.	3.4	70
114	A Nuclear-encoded Subunit of the Photosystem II Reaction Center. Journal of Biological Chemistry, 1995, 270, 17588-17593.	3.4	54
115	The PSII-S Protein of Higher Plants: A New Type of Pigment-Binding Protein. Biochemistry, 1995, 34, 11133-11141.	2.5	140
116	Functional Studies on the Newly Discovered 6.1 kDa Protein from Spinach Thylakoids., 1995,, 2269-2272.		2
117	Further Characterization of the Newly Discovered 6.1 kDA Protein of the Photosystem II Reaction Center., 1995,, 2265-2268.		O
118	The PSII-S Polypeptide — An Atypical Cab Protein. , 1995, , 339-342.		0
119	The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Letters, 1994, 342, 261-266.	2.8	64