
Tao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174577/publications.pdf Version: 2024-02-01

Τλο ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009, 457, 854-858.	27.8	1,526
2	A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 2017, 3, 17018.	9.3	425
3	ChIP-Seq identification of weakly conserved heart enhancers. Nature Genetics, 2010, 42, 806-810.	21.4	395
4	Widespread long-range cis-regulatory elements in the maize genome. Nature Plants, 2019, 5, 1237-1249.	9.3	250
5	A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 2018, 19, 84.	8.8	230
6	The prevalence, evolution and chromatin signatures of plant regulatory elements. Nature Plants, 2019, 5, 1250-1259.	9.3	219
7	Genome-Wide Identification of Regulatory DNA Elements and Protein-Binding Footprints Using Signatures of Open Chromatin in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2719-2731.	6.6	204
8	Chromosome-Specific Painting in <i>Cucumis</i> Species Using Bulked Oligonucleotides. Genetics, 2015, 200, 771-779.	2.9	192
9	A cis-regulatory atlas in maize at single-cell resolution. Cell, 2021, 184, 3041-3055.e21.	28.9	176
10	Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 2019, 17, 9.	3.8	172
11	Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Molecular Plant, 2019, 12, 1027-1036.	8.3	159
12	CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Frontiers in Plant Science, 2017, 8, 1598.	3.6	150
13	Comparative Oligo-FISH Mapping: An Efficient and Powerful Methodology To Reveal Karyotypic and Chromosomal Evolution. Genetics, 2018, 208, 513-523.	2.9	146
14	Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures. Plant Cell, 2015, 27, 2415-2426.	6.6	136
15	Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites. Molecular Plant, 2018, 11, 999-1002.	8.3	136
16	Maize LAZY1 Mediates Shoot Gravitropism and Inflorescence Development through Regulating Auxin Transport, Auxin Signaling, and Light Response. Plant Physiology, 2013, 163, 1306-1322.	4.8	131
17	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	8.3	120
18	Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biology, 2019, 20, 123.	8.8	119

Tao Zhang

#	Article	IF	CITATIONS
19	Computational approaches for effective CRISPR guide RNA design and evaluation. Computational and Structural Biotechnology Journal, 2020, 18, 35-44.	4.1	119
20	Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants. Plant Physiology, 2015, 168, 1406-1416.	4.8	98
21	Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1679-1685.	7.1	95
22	Nextâ€generation sequencing, <scp>FISH</scp> mapping and syntenyâ€based modeling reveal mechanisms of decreasing dysploidy in <i><scp>C</scp>ucumis</i> . Plant Journal, 2014, 77, 16-30.	5.7	90
23	PlantDHS: a database for DNase I hypersensitive sites in plants. Nucleic Acids Research, 2016, 44, D1148-D1153.	14.5	86
24	Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. Journal of Genetics and Genomics, 2017, 44, 469-472.	3.9	82
25	The <i>CentO</i> satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4875-83.	7.1	80
26	Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome. Plant Physiology, 2018, 176, 2789-2803.	4.8	71
27	Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biology, 2017, 18, 203.	8.8	62
28	An efficient Oligoâ \in FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant Journal, 2021, 105, 978-993.	5.7	58
29	Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 2021, 19, 2052-2068.	8.3	55
30	Towards genome-wide prediction and characterization of enhancers in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 131-139.	1.9	53
31	CRISPRMatch: An Automatic Calculation and Visualization Tool for High-throughput CRISPR Genome-editing Data Analysis. International Journal of Biological Sciences, 2018, 14, 858-862.	6.4	53
32	Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biology, 2018, 18, 110.	3.6	48
33	An extraordinarily stable karyotype of the woody <i>Populus</i> species revealed by chromosome painting. Plant Journal, 2020, 101, 253-264.	5.7	46
34	Dualâ€color oligoâ€FISH can reveal chromosomal variations and evolution in <i>Oryza</i> species. Plant Journal, 2020, 101, 112-121.	5.7	44
35	Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma, 2018, 127, 313-321.	2.2	43
36	Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in <i>Arabidopsis thaliana</i> . Plant Cell, 2021, 33, 1997-2014.	6.6	43

Tao Zhang

#	Article	IF	CITATIONS
37	Copy number variation in potato – an asexually propagated autotetraploid species. Plant Journal, 2013, 75, 80-89.	5.7	39
38	Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing. Frontiers in Plant Science, 2019, 10, 1173.	3.6	39
39	Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biology, 2020, 21, 24.	8.8	35
40	Local Changes in Chromatin Accessibility and Transcriptional Networks Underlying the Nitrate Response in Arabidopsis Roots. Molecular Plant, 2019, 12, 1545-1560.	8.3	31
41	Chorus2: design of genomeâ€scale oligonucleotideâ€based probes for fluorescence <i>inÂsitu</i> hybridization. Plant Biotechnology Journal, 2021, 19, 1967-1978.	8.3	31
42	Adaptive microclimatic structural and expressional dehydrin 1 evolution in wild barley, <i>Hordeum spontaneum</i> , at â€~Evolution Canyon', Mount Carmel, Israel. Molecular Ecology, 2009, 18, 2063-2075.	3.9	30
43	Amplification and adaptation of centromeric repeats in polyploid switchgrass species. New Phytologist, 2018, 218, 1645-1657.	7.3	30
44	A universal chromosome identification system for maize and wild Zea species. Chromosome Research, 2020, 28, 183-194.	2.2	26
45	Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. Plant Physiology, 2021, 187, 73-87.	4.8	25
46	De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Communications Biology, 2018, 1, 84.	4.4	24
47	Genomeâ€wide analyses of PAMâ€relaxed Cas9 genome editors reveal substantial offâ€target effects by ABE8e in rice. Plant Biotechnology Journal, 2022, 20, 1670-1682.	8.3	23
48	Epigenomic features of DNA G-quadruplexes and their roles in regulating rice gene transcription. Plant Physiology, 2022, 188, 1632-1648.	4.8	22
49	Molecular cytogenetic characterization of wheat–Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica, 2009, 167, 197-202.	1.2	21
50	Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L Chromosome Research, 2020, 28, 171-182.	2.2	21
51	Single-cell analysis of cis-regulatory elements. Current Opinion in Plant Biology, 2022, 65, 102094.	7.1	21
52	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	8.3	21
53	The chromosome number, karyotype and genome size of the desert plant diploid Reaumuria soongorica (Pall.) Maxim. Plant Cell Reports, 2011, 30, 955-964.	5.6	20
54	Open Chromatin in Plant Genomes. Cytogenetic and Genome Research, 2014, 143, 18-27.	1.1	19

TAO ZHANG

#	Article	IF	CITATIONS
55	Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines. Nucleic Acids Research, 2018, 46, 5012-5028.	14.5	19
56	Identification of α-gliadin genes in Dasypyrum in relation to evolution and breeding. Euphytica, 2009, 165, 155.	1.2	15
57	Genome-wide Profiling of Histone Lysine Butyrylation Reveals its Role in the Positive Regulation of Gene Transcription in Rice. Rice, 2019, 12, 86.	4.0	15
58	Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at "Evolution Canyonâ€, Israel. Genetica, 2011, 139, 1429-1438.	1.1	13
59	Targeting Cis-Regulatory Elements for Rice Grain Quality Improvement. Frontiers in Plant Science, 2021, 12, 705834.	3.6	13
60	Quality control and evaluation of plant epigenomics data. Plant Cell, 2022, 34, 503-513.	6.6	13
61	Single-Cell Transcriptome and Network Analyses Unveil Key Transcription Factors Regulating Mesophyll Cell Development in Maize. Genes, 2022, 13, 374.	2.4	13
62	Single Copy Oligonucleotide Fluorescence In Situ Hybridization Probe Design Platforms: Development, Application and Evaluation. International Journal of Molecular Sciences, 2021, 22, 7124.	4.1	12
63	Transcriptome Comparative Profiling of Barley eibi1 Mutant Reveals Pleiotropic Effects of HvABCG31 Gene on Cuticle Biogenesis and Stress Responsive Pathways. International Journal of Molecular Sciences, 2013, 14, 20478-20491.	4.1	9
64	Diversity and evolution of four dispersed repetitive DNA sequences in the genus Secale. Genome, 2011, 54, 285-300.	2.0	8
65	Adaptive evolution of duplicated hsp17 genes in wild barley from microclimatically divergent sites of Israel. Genetics and Molecular Research, 2014, 13, 1220-1232.	0.2	8
66	Chromosome Painting Based on Bulked Oligonucleotides in Cotton. Frontiers in Plant Science, 2020, 11, 802.	3.6	7
67	DEEP GREEN PANICLE1 suppresses GOLDEN2-LIKE activity to reduce chlorophyll synthesis in rice glumes. Plant Physiology, 2021, 185, 469-477.	4.8	6
68	Transcriptional abundance is not the single force driving the evolution of bacterial proteins. BMC Evolutionary Biology, 2013, 13, 162.	3.2	5
69	Segmental Duplication of Chromosome 11 and its Implications for Cell Division and Genome-wide Expression in Rice. Scientific Reports, 2017, 7, 2689.	3.3	4
70	Analysis of Off-Target Mutations in CRISPR-Edited Rice Plants Using Whole-Genome Sequencing. Methods in Molecular Biology, 2021, 2238, 145-172.	0.9	4
71	<i>De novo</i> centromere formation in pericentromeric region of rice chromosome 8. Plant Journal, 0, , .	5.7	4
72	Molecular cloning of cDNAs for 14-3-3 and its protein interactions in a white-rot fungusPhanerochaete chrysosporium. Annals of Microbiology, 2006, 56, 191-196.	2.6	1

#	Article	IF	CITATIONS
73	Molecular Characterization and Evolutionary Analysis of Alpha-gliadin Genes from Eremopyrum bonaepartis (Triticeae). Journal of Agricultural Science, 2010, 2, .	0.2	ο
74	Identification, Classification and Phylogenetic Analysis of SET Domain Gene in Barley. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0