Monika Stengl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174506/publications.pdf

Version: 2024-02-01

186265 197818 2,556 65 28 49 citations h-index g-index papers 67 67 67 1107 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distribution and daily oscillation of GABA in the circadian system of the cockroach <i>Rhyparobia maderae</i> . Journal of Comparative Neurology, 2022, 530, 770-791.	1.6	3
2	Cyclic nucleotideâ€dependent ionic currents in olfactory receptor neurons of the hawkmoth <i>Manduca sexta</i> suggest pull–push sensitivity modulation. European Journal of Neuroscience, 2021, 54, 4804-4826.	2.6	3
3	Multiscale timing of pheromone transduction in hawkmoth olfactory receptor neurons. , 2021, , 435-468.		1
4	Circadian pacemaker neurons of the Madeira cockroach are inhibited and activated by GABA A and GABA B receptors. European Journal of Neuroscience, 2020, 51, 282-299.	2.6	6
5	NeitherÂper, nor tim1, nor cry2 alone are essential components of the molecular circadian clockwork in the Madeira cockroach. PLoS ONE, 2020, 15, e0235930.	2.5	3
6	Analysis of Pigment-Dispersing Factor Neuropeptides and Their Receptor in a Velvet Worm. Frontiers in Endocrinology, 2020, $11,273$.	3.5	4
7	Candidates for photic entrainment pathways to the circadian clock via optic lobe neuropils in the Madeira cockroach. Journal of Comparative Neurology, 2020, 528, 1754-1774.	1.6	6
8	Beyond spikes: Multiscale computational analysis of <i>in vivo </i> long-term recordings in the cockroach circadian clock. Network Neuroscience, 2019, 3, 944-968.	2.6	6
9	Mutagenesis of odorant coreceptor <i>Orco</i> fully disrupts foraging but not oviposition behaviors in the hawkmoth <i>Manduca sexta</i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15677-15685.	7.1	80
10	<scp>GABA</scp> ―and serotoninâ€expressing neurons take part in inhibitory as well as excitatory input pathways to the circadian clock of the Madeira cockroach ⟨i⟩Rhyparobia maderae⟨/i⟩. European Journal of Neuroscience, 2018, 47, 1067-1080.	2.6	18
11	Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach. Journal of Biological Rhythms, 2018, 33, 35-51.	2.6	24
12	The Diacylglycerol Analogs OAG and DOG Differentially Affect Primary Events of Pheromone Transduction in the Hawkmoth Manduca sexta in a Zeitgebertime-Dependent Manner Apparently Targeting TRP Channels. Frontiers in Cellular Neuroscience, 2018, 12, 218.	3.7	9
13	Identification and characterization of the bombykal receptor in the hawkmoth <i>Manduca sexta</i> Journal of Experimental Biology, 2017, 220, 1781-1786.	1.7	25
14	Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach, <i>Rhyparobia maderae</i> . Journal of Comparative Neurology, 2017, 525, 1250-1272.	1.6	17
15	Functional Olfactory Sensory Neurons Housed in Olfactory Sensilla on the Ovipositor of the Hawkmoth Manduca sexta. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	19
16	Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces. Materials Science and Engineering C, 2016, 64, 278-285.	7.3	11
17	Peptidergic circadian clock circuits in the Madeira cockroach. Current Opinion in Neurobiology, 2016, 41, 44-52.	4.2	42
18	The neuropeptide SIFamide in the brain of three cockroach species. Journal of Comparative Neurology, 2016, 524, 1337-1360.	1.6	17

#	Article	IF	CITATIONS
19	No Evidence for Ionotropic Pheromone Transduction in the Hawkmoth Manduca sexta. PLoS ONE, 2016, 11, e0166060.	2.5	28
20	How does the circadian clock tick in the Madeira cockroach?. Current Opinion in Insect Science, 2015, 12, 38-45.	4.4	20
21	Octopamine Regulates Antennal Sensory Neurons via Daytime-Dependent Changes in cAMP and IP3 Levels in the Hawkmoth Manduca sexta. PLoS ONE, 2015, 10, e0121230.	2.5	32
22	Bimodal Oscillations of Cyclic Nucleotide Concentrations in the Circadian System of the Madeira Cockroach <i>Rhyparobia maderae </i> Journal of Biological Rhythms, 2014, 29, 318-331.	2.6	9
23	Candidates for the light entrainment pathway to the circadian clock of the Madeira cockroach Rhyparobia maderae. Cell and Tissue Research, 2014, 355, 447-462.	2.9	15
24	Signaling of Pigment-Dispersing Factor (PDF) in the Madeira Cockroach Rhyparobia maderae. PLoS ONE, 2014, 9, e108757.	2.5	29
25	The role of the coreceptor Orco in insect olfactory transduction. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 897-909.	1.6	121
26	Calcium responses of circadian pacemaker neurons of the cockroach Rhyparobia maderae to acetylcholine and histamine. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 365-374.	1.6	13
27	Insect chemoreception: a tribute to John G. Hildebrand. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 875-877.	1.6	1
28	<scp>N</scp> europeptidergic input pathways to the circadian pacemaker center of the <scp>M</scp> adeira cockroach analysed with an improved injection technique. European Journal of Neuroscience, 2013, 38, 2842-2852.	2.6	12
29	In situ Tip-Recordings Found No Evidence for an Orco-Based Ionotropic Mechanism of Pheromone-Transduction in Manduca sexta. PLoS ONE, 2013, 8, e62648.	2.5	33
30	Sequence and Expression of <i>per, tim1</i> , and <i>cry2</i> Genes in the Madeira Cockroach <i>Rhyparobia maderae</i> . Journal of Biological Rhythms, 2012, 27, 453-466.	2.6	19
31	Time of Day Changes in Cyclic Nucleotides Are Modified via Octopamine and Pheromone in Antennae of the Madeira Cockroach. Journal of Biological Rhythms, 2012, 27, 388-397.	2.6	18
32	Ca ²⁺ â€dependent ion channels underlying spontaneous activity in insect circadian pacemaker neurons. European Journal of Neuroscience, 2012, 36, 3021-3029.	2.6	16
33	Myoinhibitory peptides in the brain of the cockroach <i>Leucophaea maderae</i> and colocalization with pigmentâ€dispersing factor in circadian pacemaker cells. Journal of Comparative Neurology, 2012, 520, 1078-1097.	1.6	36
34	Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell and Tissue Research, 2011, 343, 559-577.	2.9	28
35	Light Affects the Branching Pattern of Peptidergic Circadian Pacemaker Neurons in the Brain of the Cockroach <i>Leucophaea maderae</i> /i>. Journal of Biological Rhythms, 2011, 26, 507-517.	2.6	40
36	Implementation of pigmentâ€dispersing factorâ€immunoreactive neurons in a standardized atlas of the brain of the cockroach <i>Leucophaea maderae</i> . Journal of Comparative Neurology, 2010, 518, 4113-4133.	1.6	64

#	Article	IF	CITATIONS
37	Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae. Journal of Comparative Neurology, 2010, 518, spc1-spc1.	1.6	3
38	Pheromone Transduction in Moths. Frontiers in Cellular Neuroscience, 2010, 4, 133.	3.7	87
39	Perfusion with cAMP analogue affects pheromone-sensitive trichoid sensilla of the hawkmoth <i>Manduca sexta</i> in a time-dependent manner. Journal of Experimental Biology, 2010, 213, 842-852.	1.7	16
40	Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 529-545.	1.6	44
41	Examination of the role of FMRFamide-related peptides in the circadian clock of the cockroach Leucophaea maderae. Cell and Tissue Research, 2008, 332, 257-269.	2.9	24
42	Pharmacological Investigation of Protein Kinase C- and cGMP-Dependent Ion Channels in Cultured Olfactory Receptor Neurons of the Hawkmoth Manduca sexta. Chemical Senses, 2008, 33, 803-813.	2.0	15
43	Cyclic Nucleotide-Activated Currents in Cultured Olfactory Receptor Neurons of the Hawkmoth <i>Manduca sexta</i> . Journal of Neurophysiology, 2008, 100, 2866-2877.	1.8	18
44	Extracellular long-term recordings of the isolated accessory medulla, the circadian pacemaker center of the cockroach Leucophaea maderae, reveal ultradian and hint circadian rhythms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 35-42.	1.6	25
45	Localization of leucomyosuppressin in the brain and circadian clock of the cockroach Leucophaea maderae. Cell and Tissue Research, 2007, 328, 443-452.	2.9	10
46	Putative circadian pacemaker cells in the antenna of the hawkmoth Manduca sexta. Cell and Tissue Research, 2007, 330, 271-278.	2.9	37
47	Gap Junctions Between Accessory Medulla Neurons Appear to Synchronize Circadian Clock Cells of the Cockroach Leucophaea maderae. Journal of Neurophysiology, 2006, 95, 1996-2002.	1.8	29
48	Differential Receptor Activation by Cockroach Adipokinetic Hormones Produces Differential Effects on Ion Currents, Neuronal Activity, and Locomotion. Journal of Neurophysiology, 2006, 95, 2314-2325.	1.8	85
49	Perfusion with cGMP analogue adapts the action potential response of pheromone-sensitive sensilla trichoidea of the hawkmoth Manduca sextain a daytime-dependent manner. Journal of Experimental Biology, 2006, 209, 3898-3912.	1.7	25
50	Pigment-Dispersing Factor and GABA Synchronize Cells of the Isolated Circadian Clock of the Cockroach Leucophaea maderae. Journal of Neuroscience, 2005, 25, 5138-5147.	3.6	75
51	Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric circadian pacemakers of the cockroach Leucophaea maderae. Cell and Tissue Research, 2004, 318, 553-564.	2.9	58
52	Ultrastructure of pigment-dispersing hormone-immunoreactive neurons in a three-dimensional model of the accessory medulla of the cockroach Leucophaea maderae. Cell and Tissue Research, 2003, 314, 421-435.	2.9	65
53	Neural Organization of the Circadian System of the CockroachLeucophaea maderae. Chronobiology International, 2003, 20, 577-591.	2.0	88
54	Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). Journal of Experimental Biology, 2003, 206, 1877-1886.	1.7	83

#	Article	lF	CITATIONS
55	Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. Journal of Experimental Biology, 2003, 206, 1575-1588.	1.7	63
56	Optic lobe commissures in a three-dimensional brain model of the cockroachLeucophaea maderae: A search for the circadian coupling pathways. Journal of Comparative Neurology, 2002, 443, 388-400.	1.6	67
57	Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach <i>Leucophaea maderae</i> Journal of Experimental Biology, 2002, 205, 1459-1469.	1.7	81
58	Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. Journal of Experimental Biology, 2002, 205, 1459-69.	1.7	71
59	Localization of cGMP immunoreactivity and of soluble guanylyl cyclase in antennal sensilla of the hawkmoth Manduca sexta. Cell and Tissue Research, 2001, 304, 409-421.	2.9	28
60	Phase Response Curves of a Molecular Model Oscillator: Implications for Mutual Coupling of Paired Oscillators. Journal of Biological Rhythms, 2001, 16, 125-141.	2.6	31
61	OSCILLATIONS OF THE TRANSEPITHELIAL POTENTIAL OF MOTH OLFACTORY SENSILLA ARE INFLUENCED BY OCTOPAMINE AND SEROTONIN. Journal of Experimental Biology, 2001, 204, 2781-2794.	1.7	55
62	Organization of the Circadian System in Insects. Chronobiology International, 1998, 15, 567-594.	2.0	206
63	Pigment-Dispersing Hormone Shifts the Phase of the Circadian Pacemaker of the CockroachLeucophaea maderae. Journal of Neuroscience, 1997, 17, 4087-4093.	3.6	165
64	Morphology and pigment-dispersing hormone immunocytochemistry of the accessory medulla, the presumptive circadian pacemaker of the cockroach Leucophaea maderae: a light- and electron-microscopic study. Cell and Tissue Research, 1996, 285, 305-319.	2.9	63
65	Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell and Tissue Research, 1995, 282, 3-19.	2.9	109