Li Xuegang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6173435/publications.pdf Version: 2024-02-01

LI XUECANO

#	Article	IF	CITATIONS
1	Fiber-optic sensors based on Vernier effect. Measurement: Journal of the International Measurement Confederation, 2021, 167, 108451.	5.0	122
2	Magnetic Field Sensing Based on SPR Optical Fiber Sensor Interacting With Magnetic Fluid. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 234-239.	4.7	105
3	High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2018, 269, 103-109.	7.8	88
4	High-Sensitivity SPR Temperature Sensor Based on Hollow-Core Fiber. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 8494-8499.	4.7	84
5	Optical fiber sensors for glucose concentration measurement: A review. Optics and Laser Technology, 2021, 139, 106981.	4.6	71
6	No-core optical fiber sensor based on surface plasmon resonance for glucose solution concentration and temperature measurement. Optics Express, 2021, 29, 12930.	3.4	67
7	Temperature-Insensitive Optical Fiber Curvature Sensor Based on SMF-MMF-TCSMF-MMF-SMF Structure. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 141-147.	4.7	64
8	A review of specialty fiber biosensors based on interferometer configuration. Journal of Biophotonics, 2021, 14, e202100068.	2.3	57
9	Graphene enhanced optical fiber SPR sensor for liquid concentration measurement. Optical Fiber Technology, 2018, 43, 62-66.	2.7	51
10	In Situ Temperature-Compensated DNA Hybridization Detection Using a Dual-Channel Optical Fiber Sensor. Analytical Chemistry, 2021, 93, 10561-10567.	6.5	51
11	Highly-sensitive and reflective glucose sensor based on optical fiber surface plasmon resonance. Microchemical Journal, 2020, 157, 105010.	4.5	50
12	Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid. Optical Fiber Technology, 2018, 41, 1-6.	2.7	48
13	Measurement of Magnetic Field and Temperature Based on Fiber-Optic Composite Interferometer. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 1906-1911.	4.7	44
14	A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosensors and Bioelectronics, 2022, 198, 113798.	10.1	44
15	Small Curvature Sensor Based on Butterfly-Shaped Mach–Zehnder Interferometer. IEEE Transactions on Electron Devices, 2017, 64, 4644-4649.	3.0	42
16	Plug-in optical fiber SPR biosensor for lung cancer gene detection with temperature and pH compensation. Sensors and Actuators B: Chemical, 2022, 359, 131596.	7.8	40
17	Glucose sensor realized with photonic crystal fiber-based Sagnac interferometer. Optics Communications, 2017, 405, 143-146.	2.1	38
18	Temperature-Compensated Refractive Index Measurement Using a Dual Fabry–Perot Interferometer Based on C-Fiber Cavity. IEEE Sensors Journal, 2020, 20, 6408-6413.	4.7	37

LI XUEGANG

#	Article	IF	CITATIONS
19	In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber. Sensors and Actuators B: Chemical, 2022, 351, 130942.	7.8	37
20	Measurement of RI and Temperature Using Composite Interferometer With Hollow-Core Fiber and Photonic Crystal Fiber. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2631-2636.	4.7	35
21	High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance. Micromachines, 2018, 9, 640.	2.9	35
22	High Sensitive Modal Interferometer for Temperature and Refractive Index Measurement. IEEE Photonics Technology Letters, 2015, 27, 1341-1344.	2.5	34
23	Simultaneous Measurement of Temperature and Refractive Index Using an Exposed Core Microstructured Optical Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.	2.9	34
24	Surface plasmon resonance temperature sensor based on a photonic crystal fiber filled with silver nanowires. Applied Optics, 2020, 59, 5108.	1.8	29
25	Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection. Talanta, 2022, 247, 123599.	5.5	29
26	Optical fiber refractive index sensor with low detection limit and large dynamic range using a hybrid fiber interferometer. Journal of Lightwave Technology, 2019, , 1-1.	4.6	28
27	All-fiber all-optical quantitative polymerase chain reaction (qPCR). Sensors and Actuators B: Chemical, 2020, 323, 128681.	7.8	27
28	Plug-in label-free optical fiber DNA hybridization sensor based on C-type fiber Vernier effect. Sensors and Actuators B: Chemical, 2022, 354, 131212.	7.8	26
29	In-Fiber Mach–Zehnder Interferometer Based on Up-Taper Fiber Structure With Er3+ Doped Fiber Ring Laser. Journal of Lightwave Technology, 2016, 34, 3475-3481.	4.6	25
30	Simultaneous Measurement of Temperature and Relative Humidity Using Cascaded C-shaped Fabry-Perot interferometers. Journal of Lightwave Technology, 2022, 40, 1209-1215.	4.6	24
31	Highly Sensitive Humidity Sensor With Low-Temperature Cross-Sensitivity Based on a Polyvinyl Alcohol Coating Tapered Fiber. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	23
32	High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber. Instrumentation Science and Technology, 2018, 46, 253-264.	1.8	22
33	Practical sensing approach based on surface plasmon resonance in a photonic crystal fiber. OSA Continuum, 2018, 1, 1332.	1.8	22
34	Cascaded Sagnac Loops Embedded With Two Polarization Maintaining Photonic Crystal Fibers for Highly Sensitive Strain Measurement. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	4.7	18
35	Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer. IEEE Photonics Technology Letters, 2016, 28, 1839-1842.	2.5	17
36	A Vectorial Analysis of the Curvature Sensor Based on a Dual-Core Photonic Crystal Fiber. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6564-6570.	4.7	16

LI XUEGANG

#	Article	IF	CITATIONS
37	Simultaneous Measurement of Electric Field and Strain With a Tandem-Interferometric Device. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 965-970.	4.7	15
38	Temperature Compensated Magnetic Field Sensor Using Magnetic Fluid Filled Exposed Core Microstructure Fiber. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	15
39	A High-Sensitivity Temperature Sensor Based on Glycerol-Filled Tellurite Microstructure Optical Fiber. IEEE Access, 2019, 7, 180244-180250.	4.2	12
40	Electrically tunable optical fiber device based on hollow-core fiber infiltrated with liquid crystal. Sensors and Actuators A: Physical, 2021, 318, 112500.	4.1	11
41	Optical Fiber SPR Sensor With Surface Ion Imprinting for Highly Sensitive and Highly Selective Ni ²⁺ Detection. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6.	4.7	11
42	Applications of Modal Interferences in Optical Fiber Sensors Based on Mismatch Methods. Instrumentation Science and Technology, 2015, 43, 1-20.	1.8	9
43	A Refractive Index Sensitive Liquid Level Monitoring Sensor Based on Multimode Interference. Photonics, 2020, 7, 89.	2.0	9
44	A Miniature Optical Fiber Fabry–Perot Interferometer Temperature Sensor Based on Tellurite Glass. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6.	4.7	9
45	Theoretical Investigation of Mid-Infrared Temperature Sensing Based on Four-Wave Mixing in a CS ₂ -Filled GeAsSeTe Microstructured Optical Fiber. IEEE Sensors Journal, 2021, 21, 10711-10718.	4.7	8
46	Simultaneous Measurement of Temperature and Pressure Based on Ring-Shaped Sensing Structure With Polymer Coated No-Core Fiber. IEEE Sensors Journal, 2021, 21, 22783-22791.	4.7	7
47	Microstructured optical fiber temperature sensor based on the self-phase modulation effect. Optics Express, 2021, 29, 15653.	3.4	7
48	An Ultra-High Sensitivity Optical Fiber Refractive Index Sensor Based on Plasmonic Mach-Zehnder Interferometer. IEEE Photonics Journal, 2021, 13, 1-7.	2.0	6
49	Temperature compensated fiber optic magnetic sensor based on the combination interference principle. Optics Letters, 2022, 47, 2558.	3.3	6
50	Highly sensitive refractive index sensor based on a D-shaped few-mode fiber with silver and graphene film. Optik, 2022, 267, 169653.	2.9	6
51	High Precision Optical Path Difference Compensation Method Based on Three- Parameter Cosine Fitting Method. Journal of Lightwave Technology, 2022, 40, 4911-4918.	4.6	4
52	Research on temperature sensing characteristics of fiber side-open cavity structure. Measurement: Journal of the International Measurement Confederation, 2022, 190, 110741.	5.0	1
53	In-fiber Surface Plasmon Resonance Temperature Sensor Based on PDMS Infiltrated Hollow Core Fiber. , 2019, , .		0
54	Refractive Index and Temperature Sensing with Sagnac-Mach Zehnder Hybrid Fiber Interferometer. , 2020, , .		0

0

#	Article	IF	CITATIONS
55	Numerical demonstration of mid-infrared temperature sensing by soliton self-frequency shift in a fluorotellurite microstructured fiber. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	0

56 Optical Fiber SPR Sensor for Highly-Sensitive Detection of Cholesterol Concentration. , 2020, , .