Giuseppe Piccioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6172981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	VIS-IR spectroscopy of magnesium chlorides at cryogenic temperatures. Icarus, 2022, 373, 114756.	2.5	4
2	On the origin of molecular oxygen on the surface of Ganymede. Icarus, 2022, 383, 115074.	2.5	3
3	Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
4	Temperature-dependent, VIS-NIR reflectance spectroscopy of sodium sulfates. Icarus, 2021, 357, 114165.	2.5	7
5	On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4892-4907.	4.4	5
6	Oscillations and Stability of the Jupiter Polar Cyclones. Geophysical Research Letters, 2021, 48, e2021GL094235.	4.0	11
7	Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM Lâ€Band Imager. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029450.	2.4	15
8	Regions of interest on Ganymede's and Callisto's surfaces as potential targets for ESA's JUICE mission. Planetary and Space Science, 2021, 208, 105324.	1.7	12
9	A simulation chamber for absorption spectroscopy in planetary atmospheres. Atmospheric Measurement Techniques, 2021, 14, 7187-7197.	3.1	2
10	Infrared observations of Io from Juno. Icarus, 2020, 341, 113607.	2.5	23
11	Juno/JIRAM: Planning and commanding activities. Advances in Space Research, 2020, 65, 598-615.	2.6	5
12	Mapping Io's Surface Composition With Juno/JIRAM. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006522.	3.6	8
13	Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006508.	3.6	16
14	Two‥ear Observations of the Jupiter Polar Regions by JIRAM on Board Juno. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006098.	3.6	24
15	Preliminary estimation of the detection possibilities of Ganymede's water vapor environment with MAJIS. Planetary and Space Science, 2020, 191, 105004.	1.7	5
16	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	47
17	On the Spatial Distribution of Minor Species in Jupiter's Troposphere as Inferred From Juno JIRAM Data. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006206.	3.6	14
18	Global maps of Venus nightside mean infrared thermal emissions obtained by VIRTIS on Venus Express. Icarus, 2020, 343, 113683.	2.5	3

#	Article	IF	CITATIONS
19	Validation of the IPSL Venus GCM Thermal Structure with Venus Express Data. Atmosphere, 2019, 10, 584.	2.3	9
20	Scientific goals and technical challenges of the MAJIS imaging spectrometer for the JUICE mission. , 2019, , .		2
21	H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM. Icarus, 2019, 329, 132-139.	2.5	11
22	The changing temperature of the nucleus of comet 67P induced by morphological and seasonal effects. Nature Astronomy, 2019, 3, 649-658.	10.1	34
23	Serendipitous infrared observations of Europa by Juno/JIRAM. Icarus, 2019, 328, 1-13.	2.5	15
24	NIR reflectance spectroscopy of hydrated and anhydrous sodium carbonates at different temperatures. Icarus, 2019, 317, 388-411.	2.5	18
25	Reflectance spectroscopy of ammonium-bearing phyllosilicates. Icarus, 2019, 321, 522-530.	2.5	17
26	Clusters of cyclones encircling Jupiter's poles. Nature, 2018, 555, 216-219.	27.8	90
27	Circulation of Venusian Atmosphere at 90–110Âkm Based on Apparent Motions of the O ₂ 1.27Âμm Nightglow From VIRTISâ€M (Venus Express) Data. Geophysical Research Letters, 2018, 45, 2554-2562	. 4.0	14
28	Temperature estimation from hydroxyl airglow emission in the Venus night side mesosphere. Icarus, 2018, 300, 386-391.	2.5	1
29	Temperature dependence of collisional induced absorption (CIA) bands of CO2 with implications for Venus' atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204, 242-249.	2.3	4
30	The Advanced Optical and Thermomechanical Design of the JUICE/MAJIS Spectrometer. , 2018, , .		0
31	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	3.7	249
32	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 2018, 361, 774-777.	12.6	53
33	First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ€Juno Images. Journal of Geophysical Research E: Planets, 2018, 123, 1511-1524.	3.6	24
34	Vertical temperature profiles in the Venus mesosphere obtained by two retrieval methods from the VIRTIS-VEX observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 407-415.	2.3	1
35	The optical design of the MAJIS instrument on board of the JUICE mission. , 2018, , .		2
36	JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 2017, 213, 393-446.	8.1	91

#	Article	IF	CITATIONS
37	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. Geophysical Research Letters, 2017, 44, 5308-5316.	4.0	30
38	Preliminary results on the composition of Jupiter's troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 2017, 44, 4615-4624.	4.0	20
39	Search for active lava flows with VIRTIS on Venus Express. Journal of Geophysical Research E: Planets, 2017, 122, 1021-1045.	3.6	16
40	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H ₃ ⁺ emissions and comparison with the north aurora. Geophysical Research Letters, 2017, 44, 4633-4640.	4.0	20
41	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. Geophysical Research Letters, 2017, 44, 4625-4632.	4.0	18
42	Characterization of the white ovals on Jupiter's southern hemisphere using the first data by the Juno/JIRAM instrument. Geophysical Research Letters, 2017, 44, 4660-4668.	4.0	15
43	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. Geophysical Research Letters, 2017, 44, 4641-4648.	4.0	13
44	Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 200-209.	2.3	8
45	Retrieval of Venus' cloud parameters from VIRTIS nightside spectra in the latitude band 25°-55°N. Planetary and Space Science, 2017, 144, 16-31.	1.7	3
46	Temperature-dependent VNIR spectroscopy of hydrated Mg-sulfates. Icarus, 2017, 281, 444-458.	2.5	16
47	Aeronomy of the Venus Upper Atmosphere. Space Science Reviews, 2017, 212, 1617-1683.	8.1	33
48	Stationary waves and slowly moving features in the night upper clouds of Venus. Nature Astronomy, 2017, 1, .	10.1	35
49	Properties of the dust in the coma of 67P/Churyumov-Gerasimenko observed with VIRTIS- M. Monthly Notices of the Royal Astronomical Society, 2016, , stw3197.	4.4	2
50	Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy and Astrophysics, 2016, 588, A134.	5.1	88
51	Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astronomy and Astrophysics, 2016, 589, A45.	5.1	62
52	Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P. Icarus, 2016, 277, 78-97.	2.5	61
53	Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 2016, 272, 32-47.	2.5	127
54	The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus, 2016, 274, 334-349.	2.5	54

#	Article	IF	CITATIONS
55	Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S156-S169.	4.4	87
56	No statistical evidence of lightning in Venus night-side atmosphere from VIRTIS-Venus Express Visible observations. Icarus, 2016, 277, 395-400.	2.5	30
57	Evolution of CO ₂ , CH ₄ , and OCS abundances relative to H ₂ O in the coma of comet 67P around perihelion from <i>Rosetta</i> /VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S170-S183.	4.4	72
58	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
59	Sensitivity of net thermal flux to the abundance of trace gases in the lower atmosphere of Venus. Journal of Geophysical Research E: Planets, 2016, 121, 1737-1752.	3.6	15
60	Radiative energy balance of Venus based on improved models of the middle and lower atmosphere. Icarus, 2016, 272, 178-205.	2.5	21
61	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
62	First observations of H ₂ O and CO ₂ vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A6.	5.1	77
63	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
64	Terrestrial <scp>OH</scp> nightglow measurements during the <scp>Rosetta</scp> flyby. Geophysical Research Letters, 2015, 42, 5670-5677.	4.0	7
65	Thermo-mechanical design of the optical head for MAJIS experiment. , 2015, , .		0
66	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
67	Water vapor near Venus cloud tops from VIRTIS-H/Venus express observations 2006–2011. Planetary and Space Science, 2015, 113-114, 219-225.	1.7	45
68	VIRTIS on Venus Express: retrieval of real surface emissivity on global scales. , 2015, , .		1
69	The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 2015, 525, 500-503.	27.8	199
70	Using the transit of Venus to probe the upper planetary atmosphere. Nature Communications, 2015, 6, 7563.	12.8	10
71	The radiative forcing variability caused by the changes of the upper cloud vertical structure in the Venus mesosphere. Planetary and Space Science, 2015, 113-114, 298-308.	1.7	19
72	VIRTIS on Rosetta: a unique technique to observe comet 67P/Churyumov-Gerasimenko – first results and prospects. Proceedings of SPIE, 2015, , .	0.8	4

#	Article	IF	CITATIONS
73	Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus, 2015, 248, 478-498.	2.5	41
74	The visible and near infrared module of EChO. Experimental Astronomy, 2015, 40, 753-769.	3.7	0
75	Thermo-mechanical design feasibility study of an Imaging Spectrometer for the Jovian system. , 2014, , .		1
76	An improved version of the Visible and Near Infrared (VNIR) spectrometer of EChO. Proceedings of SPIE, 2014, , .	0.8	0
77	Preparing EChO space mission: laboratory simulation of planetary atmospheres. , 2014, , .		Ο
78	The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System. Planetary and Space Science, 2014, 104, 93-107.	1.7	31
79	Time variations of O2(a1î") nightglow spots on the Venus nightside and dynamics of the upper mesosphere. Icarus, 2014, 237, 306-314.	2.5	17
80	Carbon dioxide opacity of the Venus× ³ atmosphere. Planetary and Space Science, 2014, 103, 347-354.	1.7	17
81	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0002.gif" overflow="scroll"> <mml:mn>1.18</mml:mn> <mml:mspace width="0.25em"></mml:mspace> <mml:mi mathvariant="normal">î¼<mml:mi mathvariant="normal">m</mml:mi> nightside transparency window of Venus, lournal of Ouantitative Spectroscopy and Radiative Transfer, 2014, 133.</mml:mi 	2.3	13
82	464-471 Latitudinal structure of the Venus O2 infrared airglow: A signature of small-scale dynamical processes in the upper atmosphere. Icarus, 2014, 236, 92-103.	2.5	11
83	Modeling VIRTIS/VEX O ₂ (<i>a</i> 1â^t <i>g</i>) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere. Journal of Geophysical Research E: Planets, 2014, 119, 2300-2316.	3.6	15
84	The Venus nighttime atmosphere as observed by the VIRTISâ€M instrument. Average fields from the complete infrared data set. Journal of Geophysical Research E: Planets, 2014, 119, 837-849.	3.6	32
85	JIRAM, the Jovian Infrared Auroral Mapper. , 2014, , 271-324.		4
86	Near-infrared Rayleigh scattering of SF6. Molecular Physics, 2013, 111, 2314-2319.	1.7	4
87	Pre-launch calibrations of the Vis-IR Hyperspectral Imager (VIHI) onboard BepiColombo, the ESA mission to Mercury. Proceedings of SPIE, 2013, , .	0.8	5
88	The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus, 2013, 223, 609-614.	2.5	31
89	Oxygen nightglow emissions of Venus: Vertical distribution and collisional quenching. Icarus, 2013, 223, 602-608.	2.5	13
90	Comparative analysis of airglow emissions in terrestrial planets, observed with VIRTIS-M instruments on board Rosetta and Venus Express. Icarus, 2013, 226, 1115-1127.	2.5	11

#	Article	IF	CITATIONS
91	Experimental CO2 absorption coefficients at high pressure and high temperature. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117, 21-28.	2.3	27
92	Radiative Energy Balance in the Venus Atmosphere. , 2013, , 23-53.		12
93	Molecular dynamics simulations for CO2 spectra. IV. Collisional line-mixing in infrared and Raman bands. Journal of Chemical Physics, 2013, 138, 244310.	3.0	11
94	A chaotic long-lived vortex at the southern pole of Venus. Nature Geoscience, 2013, 6, 254-257.	12.9	32
95	VIRTIS/VEX observations of Venus: overview of selected scientific results. Journal of Applied Remote Sensing, 2012, 6, 063580-1.	1.3	15
96	The visible and near infrared (VNIR) spectrometer of EChO. , 2012, , .		2
97	The OH Venus nightglow spectrum: Intensity and vibrational composition from VIRTIS—Venus Express observations. Planetary and Space Science, 2012, 73, 387-396.	1.7	32
98	Limb Darkening study using Venus nightside infrared spectra from VIRTIS-Venus Express data. Planetary and Space Science, 2012, 69, 62-75.	1.7	11
99	Refinements in the data analysis of VIRTIS-M-IR Venus nightside spectra. Advances in Space Research, 2012, 50, 228-255.	2.6	24
100	Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus, 2012, 220, 958-970.	2.5	28
101	An integrated payload design for the Exoplanet Characterisation Observatory (EChO). , 2012, , .		3
102	Atomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping. Icarus, 2012, 217, 849-855.	2.5	50
103	Models of the global cloud structure on Venus derived from Venus Express observations. Icarus, 2012, 217, 542-560.	2.5	95
104	Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus, 2012, 217, 561-569.	2.5	74
105	Vertical structure of the Venus cloud top from the VeRa and VIRTIS observations onboard Venus Express. Icarus, 2012, 217, 599-609.	2.5	57
106	Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus, 2012, 217, 640-647.	2.5	59
107	Spatial correlation of OH Meinel and O2 infrared atmospheric nightglow emissions observed with VIRTIS-M on board Venus Express. Icarus, 2012, 217, 813-817.	2.5	30
108	Rotation period of Venus estimated from Venus Express VIRTIS images and Magellan altimetry. Icarus, 2012, 217, 474-483.	2.5	28

#	Article	IF	CITATIONS
109	Venus atmospheric and surface studies from VIRTIS on Venus Express. , 2011, , .		3
110	Modeling the atmospheric limb emission of CO2 at 4.3 μm in the terrestrial planets. Planetary and Space Science, 2011, 59, 988-998.	1.7	20
111	Hydroxyl airglow on Venus in comparison with Earth. Planetary and Space Science, 2011, 59, 974-980.	1.7	7
112	Oxygen airglow emission on Venus and Mars as seen by VIRTIS/VEX and OMEGA/MEX imaging spectrometers. Planetary and Space Science, 2011, 59, 981-987.	1.7	9
113	Non-LTE CO limb emission at in the upper atmosphere of Venus, Mars and Earth: Observations and modeling. Planetary and Space Science, 2011, 59, 1010-1018.	1.7	14
114	Scattering particles in nightside limb observations of Venus' upper atmosphere by Venus Express VIRTIS. Icarus, 2011, 211, 51-57.	2.5	36
115	Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500cmâ^1. l—central and wing regions of the allowed vibrational bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 925-936.	2.3	51
116	Venus's Southern Polar Vortex Reveals Precessing Circulation. Science, 2011, 332, 577-580.	12.6	54
117	The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS. Science, 2011, 334, 492-494.	12.6	110
118	VIS-NIR Imaging Spectroscopy of Mercury's Surface: SIMBIO-SYS/VIHI Experiment Onboard the BepiColombo Mission. IEEE Transactions on Geoscience and Remote Sensing, 2010, , .	6.3	14
119	Calibration of Hyperspectral Imaging Data: VIRTIS-M Onboard Venus Express. IEEE Transactions on Geoscience and Remote Sensing, 2010, , .	6.3	6
120	The distributions of the OH Meinel and nightglow emissions in the Venus mesosphere based on VIRTIS observations. Advances in Space Research, 2010, 45, 1268-1275.	2.6	26
121	Jupiter's hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro-imagers. Planetary and Space Science, 2010, 58, 1265-1278.	1.7	18
122	Investigation of oxygen O2(a1Δ g) emission on the nightside of Venus: Nadir data of the VIRTIS-M experiment of the Venus Express mission. Cosmic Research, 2010, 48, 232-239.	0.6	7
123	Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data. Science, 2010, 328, 605-608.	12.6	270
124	Correlations between cloud thickness and sub loud water abundance on Venus. Geophysical Research Letters, 2010, 37, .	4.0	47
125	Martian atmosphere as observed by VIRTISâ€M on Rosetta spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	10
126	Thermal structure of Venusian nighttime mesosphere as observed by VIRTISâ€Venus Express. Journal of Geophysical Research, 2010, 115, .	3.3	41

#	Article	IF	CITATIONS
127	Venus OH nightglow distribution based on VIRTIS limb observations from Venus Express. Geophysical Research Letters, 2010, 37, .	4.0	19
128	VIS-NIR imaging spectroscopy of the Mercury's surface: SIMBIO-SYS/VIHI experiment onboard the Bepi Colombo mission. , 2009, , .		0
129	The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 985-988.	7.1	46
130	Atomic oxygen distribution in the Venus mesosphere from observations of O2 infrared airglow by VIRTIS-Venus Express. Icarus, 2009, 199, 264-272.	2.5	27
131	Variability of CO concentrations in the Venus troposphere from Venus Express/VIRTIS using a Band Ratio Technique. Icarus, 2009, 201, 432-443.	2.5	24
132	Analysis of thermal emission from the nightside of Venus at 1.51 and 1.55 μm. Icarus, 2009, 201, 814-817.	2.5	7
133	Venus express: Highlights of the nominal mission. Solar System Research, 2009, 43, 185-209.	0.7	24
134	Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. Journal of Geophysical Research, 2009, 114, .	3.3	55
135	Concurrent observations of the ultraviolet nitric oxide and infrared O ₂ nightglow emissions with Venus Express. Journal of Geophysical Research, 2009, 114, .	3.3	25
136	Visible and nearâ€infrared nightglow of molecular oxygen in the atmosphere of Venus. Journal of Geophysical Research, 2009, 114, .	3.3	56
137	Calibration pipeline of VIS-NIR imaging spectrometers for planetary exploration: The rosetta VIRTIS-M case. , 2009, , .		3
138	Calibration pipeline of VIRTIS-M onboard Venus Express. , 2009, , .		0
139	Gravity waves in the upper atmosphere of Venus revealed by CO ₂ nonlocal thermodynamic equilibrium emissions. Journal of Geophysical Research, 2009, 114, .	3.3	29
140	Limb observations of CO ₂ and CO non‣TE emissions in the Venus atmosphere by VIRTIS/Venus Express. Journal of Geophysical Research, 2009, 114, .	3.3	27
141	Multivariate analysis of Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) Venus Express nightside and limb observations. Journal of Geophysical Research, 2009, 114, .	3.3	19
142	Nearâ€ I R oxygen nightglow observed by VIRTIS in the Venus upper atmosphere. Journal of Geophysical Research, 2009, 114, .	3.3	74
143	Cloud structure in Venus middleâ€ŧoâ€lower atmosphere as inferred from VEX/VIRTIS 1.74 <i>μ</i> m data. Journal of Geophysical Research, 2009, 114, .	3.3	12
144	Altimetry of the Venus cloud tops from the Venus Express observations. Journal of Geophysical Research, 2009, 114, .	3.3	119

#	Article	IF	CITATIONS
145	Vortex circulation on Venus: Dynamical similarities with terrestrial hurricanes. Geophysical Research Letters, 2009, 36, .	4.0	38
146	VIRTIS: An Imaging Spectrometer for the ROSETTA Mission. , 2009, , 563-585.		3
147	Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus. Nature, 2008, 456, 620-623.	27.8	69
148	Distribution of the O ₂ infrared nightglow observed with VIRTIS on board Venus Express. Geophysical Research Letters, 2008, 35, .	4.0	50
149	Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus. Geophysical Research Letters, 2008, 35, .	4.0	64
150	Variable winds on Venus mapped in three dimensions. Geophysical Research Letters, 2008, 35, .	4.0	119
151	Retrieval of air temperature profiles in the Venusian mesosphere from VIRTISâ€M data: Description and validation of algorithms. Journal of Geophysical Research, 2008, 113, .	3.3	32
152	Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations. Journal of Geophysical Research, 2008, 113, .	3.3	52
153	Venus surface data extraction from VIRTIS/Venus Express measurements: Estimation of a quantitative approach. Journal of Geophysical Research, 2008, 113, .	3.3	11
154	Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTISâ€M observations. Journal of Geophysical Research, 2008, 113, .	3.3	37
155	Spatial variability of carbon monoxide in Venus' mesosphere from Venus Express/Visible and Infrared Thermal Imaging Spectrometer measurements. Journal of Geophysical Research, 2008, 113, .	3.3	48
156	Evidence for anomalous cloud particles at the poles of Venus. Journal of Geophysical Research, 2008, 113, .	3.3	38
157	Venus surface thermal emission at 1 <i>μ</i> m in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions. Journal of Geophysical Research, 2008, 113, .	3.3	84
158	Cyclostrophic winds from the Visible and Infrared Thermal Imaging Spectrometer temperature sounding: A preliminary analysis. Journal of Geophysical Research, 2008, 113, .	3.3	33
159	Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEXâ€VIRTIS images. Journal of Geophysical Research, 2008, 113, .	3.3	60
160	A latitudinal survey of CO, OCS, H ₂ O, and SO ₂ in the lower atmosphere of Venus: Spectroscopic studies using VIRTISâ€H. Journal of Geophysical Research, 2008, 113, .	3.3	79
161	First detection of hydroxyl in the atmosphere of Venus. Astronomy and Astrophysics, 2008, 483, L29-L33.	5.1	86
162	Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planetary and Space Science, 2007, 55, 1653-1672.	1.7	155

#	Article	IF	CITATIONS
163	Venus Express—The first European mission to Venus. Planetary and Space Science, 2007, 55, 1636-1652.	1.7	212
164	A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature, 2007, 450, 641-645.	27.8	95
165	South-polar features on Venus similar to those near the north pole. Nature, 2007, 450, 637-640.	27.8	110
166	Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 2007, 128, 529-559.	8.1	181
167	Results of measurements with the Planetary Fourier Spectrometer onboard Mars Express: Clouds and dust at the end of southern summer. A comparison with OMEGA images. Cosmic Research, 2006, 44, 305-316.	0.6	10
168	Venus Express: Scientific goals, instrumentation, and scenario of the mission. Cosmic Research, 2006, 44, 334-348.	0.6	48
169	Venus Express science planning. Planetary and Space Science, 2006, 54, 1279-1297.	1.7	142
170	The planetary fourier spectrometer (PFS) onboard the European Venus Express mission. Planetary and Space Science, 2006, 54, 1298-1314.	1.7	39
171	To the depths of Venus: Exploring the deep atmosphere and surface of our sister world with Venus Express. Planetary and Space Science, 2006, 54, 1263-1278.	1.7	26
172	On-ground characterization of Rosetta/VIRTIS-M. II. Spatial and radiometric calibrations. Review of Scientific Instruments, 2006, 77, 103106.	1.3	34
173	On-ground characterization of Rosetta/VIRTIS-M. I. Spectral and geometrical calibrations. Review of Scientific Instruments, 2006, 77, 093109.	1.3	42
174	Investigation of the surface of Venus with VIRTIS on Venus Express. , 2006, , .		0
175	First observations of the planetary Fourier spectrometer at Mars. Advances in Space Research, 2005, 36, 1074-1083.	2.6	3
176	The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planetary and Space Science, 2005, 53, 963-974.	1.7	151
177	Calibration of the Planetary Fourier Spectrometer short wavelength channel. Planetary and Space Science, 2005, 53, 975-991.	1.7	43
178	Water clouds and dust aerosols observations with PFS MEX at Mars. Planetary and Space Science, 2005, 53, 1065-1077.	1.7	32
179	PFS-MEX observation of ices in the residual south polar cap of Mars. Planetary and Space Science, 2005, 53, 1089-1095.	1.7	22
180	Calibration of the Planetary Fourier Spectrometer long wavelength channel. Planetary and Space Science, 2005, 53, 993-1007.	1.7	43

#	Article	IF	CITATIONS
181	A Martian PFS average spectrum: Comparison with ISO SWS. Planetary and Space Science, 2005, 53, 1043-1052.	1.7	9
182	METHIS: Mercury thermal infrared spectrometer. Advances in Space Research, 2004, 33, 2189-2194.	2.6	0
183	VISPO project: visible image-spectrometer for planetary observations. New Astronomy, 2004, 9, 635-640.	1.8	Ο
184	VIRTIS imaging spectrometer for the ESA/Venus Express mission. , 2004, , .		9
185	Virtis Experiment at Churyumov — Gerasimenko Comet, New Rosetta Target. Astrophysics and Space Science Library, 2004, , 223-236.	2.7	4
186	VIRTIS-M flight lamps. Review of Scientific Instruments, 2003, 74, 3796-3801.	1.3	14
187	MARS-IRMA: in-situ infrared microscope analysis of Martian soil and rock samples Advances in Space Research, 2001, 28, 1219-1224.	2.6	5
188	Italian participation in the Mars exploration program. Advances in Space Research, 2001, 28, 1197-1202.	2.6	0
189	MA_MISS: Mars multispectral imager for subsurface studies. Advances in Space Research, 2001, 28, 1203-1208.	2.6	16
190	VIRTIS-M laboratory spectral measurements of analogues cometary samples. Planetary and Space Science, 2000, 48, 401-410.	1.7	4
191	Efficiency measurements of the VIRTIS-M grating. Planetary and Space Science, 2000, 48, 411-417.	1.7	7
192	IRIS Mariner 9 data revisited:. Planetary and Space Science, 2000, 48, 569-576.	1.7	12
193	The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration. Planetary and Space Science, 1999, 47, 441-450.	1.7	4
194	Virtis : an imaging spectrometer for the rosetta mission. Planetary and Space Science, 1998, 46, 1291-1304.	1.7	72
195	Extrasampling and thermal behavior of diode lasers used as a reference source in a Fourier transform IR spectrometer. Applied Optics, 1997, 36, 6774.	2.1	5
196	The spectroscopic performances of the Planetary Fourier Spectrometer for the Mars '96 mission. Planetary and Space Science, 1997, 45, 409-418.	1.7	4
197	PFS: A fourier spectrometer for the study of Martian atmosphere. Advances in Space Research, 1997, 19, 1277-1280.	2.6	28
198	Infrared spectrometer PFS for the Mars 94 orbiter. Advances in Space Research, 1996, 17, 61-64.	2.6	15

#	Article	IF	CITATIONS
199	The Planetary Fourier Spectrometer (PFS) for the orbiter of the spacecraft Mars 96. Planetary and Space Science, 1996, 44, 889-897.	1.7	23
200	Optical definition of the Planetary Fourier Spectrometer (PFS): an FTIR spectrometer for the Mars '96 mission. , 1994, , .		8
201	Planetary Fourier spectrometer: An interferometer for atmospheric studies on board Mars 94 mission. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 575-588.	0.2	4
202	Evaluation of aPbTe detector for infrared imaging purposes. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1992, 15, 1121-1128.	0.2	2
203	and seasonal variability. Monthly Notices of the Royal Astronomical Society, 0, , stw3177.	4.4	10