
Leopold Sellner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6172850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HDAC Inhibition for Optimized Cellular Immunotherapy of NY-ESO-1-Positive Soft Tissue Sarcoma. Biomedicines, 2022, 10, 373.	3.2	2
2	Intracellular Amplifiers of Reactive Oxygen Species Affecting Mitochondria as Radiosensitizers. Cancers, 2022, 14, 208.	3.7	5
3	T-Cell Prolymphocytic Leukemia: Long-Term Remissions Challenging!. Acta Haematologica, 2021, 144, 4-5.	1.4	1
4	lbrutinib for improved chimeric antigen receptor Tâ€cell production for chronic lymphocytic leukemia patients. International Journal of Cancer, 2021, 148, 419-428.	5.1	42
5	EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4+ T cells in chronic lymphocytic leukemia. Leukemia, 2021, 35, 2311-2324.	7.2	27
6	An Endoplasmic Reticulum Specific Proâ€amplifier of Reactive Oxygen Species in Cancer Cells. Angewandte Chemie - International Edition, 2021, 60, 11158-11162.	13.8	34
7	An Endoplasmic Reticulum Specific Proâ€amplifier of Reactive Oxygen Species in Cancer Cells. Angewandte Chemie, 2021, 133, 11258-11262.	2.0	5
8	Dual Effects of Cyclooxygenase Inhibitors in Combination With CD19.CAR-T Cell Immunotherapy. Frontiers in Immunology, 2021, 12, 670088.	4.8	10
9	Combining selective inhibitors of nuclear export (SINEs) with chimeric antigen receptor (CAR) TÂcells for CD19‑positive malignancies. Oncology Reports, 2021, 46, .	2.6	12
10	Evaluation of Production Protocols for the Generation of NY-ESO-1-Specific T Cells. Cells, 2021, 10, 152.	4.1	2
11	Pre-sensitization of Malignant B Cells Through Venetoclax Significantly Improves the Cytotoxic Efficacy of CD19.CAR-T Cells. Frontiers in Immunology, 2020, 11, 608167.	4.8	23
12	Survey of ex vivo drug combination effects in chronic lymphocytic leukemia reveals synergistic drug effects and genetic dependencies. Leukemia, 2020, 34, 2934-2950.	7.2	16
13	Bâ€cell maturation antigenâ€specific chimeric antigen receptor T cells for multiple myeloma: Clinical experience and future perspectives. International Journal of Cancer, 2020, 147, 2029-2041.	5.1	10
14	Idelalisib exposure before allogeneic stem cell transplantation in patients with follicular lymphoma: an EBMT survey. Bone Marrow Transplantation, 2020, 55, 2335-2338.	2.4	3
15	EBMT prospective observational study on allogeneic hematopoietic stem cell transplantation in T-prolymphocytic leukemia (T-PLL). Bone Marrow Transplantation, 2019, 54, 1391-1398.	2.4	22
16	Allogeneic transplantation in high-risk chronic lymphocytic leukemia: a single-center, intent-to-treat analysis. Haematologica, 2019, 104, e304-e306.	3.5	9
17	Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunology, Immunotherapy, 2019, 68, 1195-1209.	4.2	27
18	Treatment of patients with relapsed or refractory CD19+ lymphoid disease with T lymphocytes transduced by RV-SFG.CD19.CD28.4-1BBzeta retroviral vector: a unicentre phase I/II clinical trial protocol. BMJ Open, 2019, 9, e026644.	1.9	27

LEOPOLD SELLNER

#	Article	IF	CITATIONS
19	Tumor-Specific Reactive Oxygen Species Accelerators Improve Chimeric Antigen Receptor T Cell Therapy in B Cell Malignancies. International Journal of Molecular Sciences, 2019, 20, 2469.	4.1	14
20	Improvement of in vitro potency assays by a resting step for clinical-grade chimeric antigen receptor engineered T cells. Cytotherapy, 2019, 21, 566-578.	0.7	23
21	Shaping of CD56bri Natural Killer Cells in Patients With Steroid-Refractory/Resistant Acute Graft-vsHost Disease via Extracorporeal Photopheresis. Frontiers in Immunology, 2019, 10, 547.	4.8	16
22	Idelalisib for optimized CD19â€specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients. International Journal of Cancer, 2019, 145, 1312-1324.	5.1	67
23	Identification of Boronic Acid Derivatives as an Active Form of <i>N</i> -Alkylaminoferrocene-Based Anticancer Prodrugs and Their Radiolabeling with ¹⁸ F. Bioconjugate Chemistry, 2019, 30, 1077-1086.	3.6	21
24	Optimizing Manufacturing Protocols of Chimeric Antigen Receptor T Cells for Improved Anticancer Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 6223.	4.1	88
25	Third-Generation CAR T Cells Targeting CD19 Are Associated with an Excellent Safety Profile and Might Improve Persistence of CAR T Cells in Treated Patients. Blood, 2019, 134, 51-51.	1.4	30
26	Transcriptional Profiling Reveals Strong Impact of Major Molecular Disease Subgroups and Mixed Epistasis in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 1742-1742.	1.4	1
27	Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia, 2018, 32, 774-787.	7.2	75
28	Modulation of B Cells and Homing Marker on NK Cells Through Extracorporeal Photopheresis in Patients With Steroid-Refractory/Resistant Graft-VsHost Disease Without Hampering Anti-viral/Anti-leukemic Effects. Frontiers in Immunology, 2018, 9, 2207.	4.8	21
29	Influence of Retronectin-Mediated T-Cell Activation on Expansion and Phenotype of CD19-Specific Chimeric Antigen Receptor T Cells. Human Gene Therapy, 2018, 29, 1167-1182.	2.7	19
30	Drug-based perturbation screen uncovers synergistic drug combinations in Burkitt lymphoma. Scientific Reports, 2018, 8, 12046.	3.3	22
31	Distinct Activities of Glycolytic Enzymes Identify Chronic Lymphocytic Leukemia Patients with a more Aggressive Course and Resistance to Chemo-Immunotherapy. EBioMedicine, 2018, 32, 125-133.	6.1	6
32	No Inhibition of Anti-Viral and Anti-Leukemia Effects By Extracorporeal Photopheresis Therapy. Blood, 2018, 132, 3399-3399.	1.4	1
33	ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data. Bioinformatics, 2017, 33, 435-437.	4.1	85
34	GvL effects in T-prolymphocytic leukemia: evidence from MRD kinetics and TCR repertoire analyses. Bone Marrow Transplantation, 2017, 52, 544-551.	2.4	28
35	Lysosomeâ€Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs. Angewandte Chemie - International Edition, 2017, 56, 15545-15549.	13.8	132
36	Lysosomeâ€Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs. Angewandte Chemie, 2017, 129, 15751-15755.	2.0	25

LEOPOLD SELLNER

#	Article	IF	CITATIONS
37	DRUG PERTURBATION BASED STRATIFICATION OF LYMPHOPROLIFERATIVE DISORDERS. Hematological Oncology, 2017, 35, 56-56.	1.7	2
38	<i><scp>MED</scp>12</i> mutations and <scp>NOTCH</scp> signalling in chronic lymphocytic leukaemia. British Journal of Haematology, 2017, 179, 421-429.	2.5	29
39	Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients. Frontiers in Immunology, 2017, 8, 1956.	4.8	79
40	Drug-perturbation-based stratification of blood cancer. Journal of Clinical Investigation, 2017, 128, 427-445.	8.2	124
41	Chimeric Antigen Receptor T Cell Therapy Targeting CD19-Positive Leukemia and Lymphoma in the Context of Stem Cell Transplantation. Human Gene Therapy, 2016, 27, 758-771.	2.7	34
42	Dissection of CD20 regulation in lymphoma using RNAi. Leukemia, 2016, 30, 2409-2412.	7.2	13
43	Thiotepa-based high-dose therapy for autologous stem cell transplantation in lymphoma: a retrospective study from the EBMT. Bone Marrow Transplantation, 2016, 51, 212-218.	2.4	45
44	Marked Impact of Different Cytokines on Phenotype and Cytotoxic Activity of CD19-Specific CAR T Cells. Blood, 2016, 128, 3509-3509.	1.4	0
45	Improved Synthesis of <i>N</i> -Benzylaminoferrocene-Based Prodrugs and Evaluation of Their Toxicity and Antileukemic Activity. Journal of Medicinal Chemistry, 2015, 58, 2015-2024.	6.4	73
46	p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia, 2015, 29, 2015-2023.	7.2	149
47	Neutralization of membrane complement regulators improves complement-dependent effector functions of therapeutic anticancer antibodies targeting leukemic cells. Oncolmmunology, 2015, 4, e979688.	4.6	34
48	T-Prolymphocytic Leukemia Is Sensitive to Polyclonal T Cell-Derived Graft-Versus-Leukemia Effects: Evidence from Minimal Residual Disease Kinetics and TCR Repertoire Diversity Analyses. Blood, 2015, 126, 3159-3159.	1.4	0
49	Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia, 2014, 28, 1289-1298.	7.2	59
50	Next-generation sequencing of cancer consensus genes in lymphoma. Leukemia and Lymphoma, 2013, 54, 1831-1835.	1.3	10
51	Aminoferrocene-Based Prodrugs and Their Effects on Human Normal and Cancer Cells as Well as Bacterial Cells. Journal of Medicinal Chemistry, 2013, 56, 6935-6944.	6.4	93
52	Autologous retransplantation for patients with recurrent multiple myeloma. Cancer, 2013, 119, 2438-2446.	4.1	51
53	Targeted resequencing for analysis of clonal composition of recurrent gene mutations in chronic lymphocytic leukaemia. British Journal of Haematology, 2013, 163, 496-500.	2.5	42
54	What Do We Do with Chronic Lymphocytic Leukemia with 17p Deletion?. Current Hematologic Malignancy Reports, 2013, 8, 81-90.	2.3	7

LEOPOLD SELLNER

#	Article	IF	CITATIONS
55	Can Prognostic Factors Be Used to Direct Therapy in Chronic Lymphocytic Leukemia?. Current Hematologic Malignancy Reports, 2012, 7, 3-12.	2.3	14
56	Autologous Re-Transplantation for Patients with Relapsed Multiple Myeloma: A Single Center Experience with 200 Patients Blood, 2012, 120, 3086-3086.	1.4	0
57	Efficient gene transfer with pseudotyped recombinant adeno-associated viral vectors into human chronic myelogenous leukemia cells. Leukemia and Lymphoma, 2011, 52, 483-490.	1.3	3
58	Increased levels of 2â€hydroxyglutarate in AML patients with IDH1â€R132H and IDH2â€R140Q mutations. European Journal of Haematology, 2010, 85, 457-459.	2.2	39
59	Pseudotyped recombinant adeno-associated viral vectors mediate efficient gene transfer into primary human CD34+ peripheral blood progenitor cells. Cytotherapy, 2010, 12, 107-112.	0.7	22
60	Reapplication of High-Dose Chemotherapy with Melphalan Followed by Autologous Hematopoietic Stem Cell Transplantation as Salvage Therapy for Patients with Relapsed Multiple Myeloma. Blood, 2010, 116, 3568-3568.	1.4	0
61	Normal-Tissue Radioprotection by Overexpression of the Copper-Zinc and Manganese Superoxide Dismutase Genes. Strahlentherapie Und Onkologie, 2009, 185, 517-523.	2.0	18
62	Gene Therapy of Chronic Myelogenous Leukemia Using Pseudotyped Recombinant Adeno-Associated Viral Vectors Blood, 2009, 114, 4506-4506.	1.4	0
63	Application of a haematopoetic progenitor cell-targeted adeno-associated viral (AAV) vector established by selection of an AAV random peptide library on a leukaemia cell line. Genetic Vaccines and Therapy, 2008, 6, 12.	1.5	18
64	Generation of efficient human blood progenitor–targeted recombinant adeno-associated viral vectors (AAV) by applying an AAV random peptide library on primary human hematopoietic progenitor cells. Experimental Hematology, 2008, 36, 957-964.	0.4	23
65	Efficient Gene Transfer into Human CD34+ Peripheral Blood Progenitor Cells Using Pseudotyped Recombinant Adeno-Associated Viral Vectors. Blood, 2008, 112, 4627-4627.	1.4	0
66	Novel Efficient Primary Human Peripheral Blood Progenitor Cell-Targeted Recombinant Adeno-Associated Viral Vectors Blood, 2007, 110, 5144-5144.	1.4	0